13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland

The influence of water-rock reactions and O isotope exchange with CO₂ on water stable isotope composition of CO₂ springs in SE Australia

Rūta Karolytėa*, Gareth Johnsona, Sascha Sarona, Stuart M. V. Gilfillana

*aSchool of GeoSciences, The University of Edinburgh, King’s Buildings, James Hutton Road, Edinburgh EH9 3FE, United Kingdom

Abstract

Monitoring injected CO₂ in CCS sites using oxygen isotopes of water has been demonstrated in field and laboratory experiments. Here, we examine natural CO₂-rich springs in the Daylesford-Hepburn region, South East Australia, which show water ¹⁸O depletion compared to local precipitation. Geochemical modelling shows that water-rock reactions are unlikely to have a significant effect on the observed δ¹⁸O values, which can only be explained by isotopic exchange with CO₂. The water δ¹⁸O shift can be used for monitoring CO₂ impact on shallow groundwater aquifers, provided that there is sufficient CO₂ and distinction between water and CO₂ δ¹⁸O values exists.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: CCS; Monitoring; O isotopes; Natural analogues; Natural tracers

Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIC</td>
<td>dissolved inorganic carbon</td>
</tr>
<tr>
<td>GMWL</td>
<td>Global Meteoric Water Line</td>
</tr>
</tbody>
</table>

* Corresponding author. Tel.: +44-131-650-5916; fax: +44-131-650-5916.
E-mail address: ruta.karolyte@ed.ac.uk
1. Introduction

The stable isotope composition of CO₂ can be used as a tracer for verification and environmental monitoring of CO₂ in natural settings and of injected CO₂ in CCS projects [1]. The water-CO₂ oxygen isotope equilibration relationship presents a powerful tracing tool in conditions where CO₂ represents a major source of oxygen in a CO₂-water system and the isotopic composition of CO₂ is sufficiently different from that of brine in the storage reservoir and water in the overlying shallow aquifers [2]. Oxygen isotopes have been successfully used in CCS field projects [3] and at CO₂-enhanced oil recovery (EOR) sites [4,5] to monitor the movement of injected CO₂ plume. Their application has been confirmed in laboratory experiments at pressures and temperatures common in storage reservoirs [6,7] as well as at surface conditions [8]. This mechanism may also explain observed changes in the oxygen isotope composition away from the Local Meteoric Water Line (LMWL) in mineral spring waters from natural settings characterised by large amounts of CO₂.

Here we present a case study from CO₂-rich springs in the Daylesford-Hepburn region in Victoria, Australia, as a natural analogue of CO₂ migration to a shallow aquifer. We assess the relative importance of mineral reactions in the aquifer versus oxygen isotope equilibrium exchange between reservoir water and CO₂ for changes in the water stable isotope composition using geochemical data published by Cartwright et al. [9]. We provide evidence that equilibrium oxygen isotope exchange with CO₂ is the main mechanism responsible for the observed water oxygen isotope ratio (δ¹⁸O) depletion compared to the LMWL. Consequently we show that the oxygen isotope relationship observed in field sites and laboratory experiments is also observed in natural shallow aquifers where CO₂ is migrating to shallow groundwater aquifer from depth. We estimate the amount of CO₂ required to produce the observed isotopic shift and show that in cases where large amounts of CO₂ interact with water of sufficiently distinct isotopic composition, oxygen isotopes are a potential tracer for identifying CO₂ migration to the shallow subsurface.

1.1. Geological background

CO₂-rich mineral water springs in the Daylesford-Hepburn region flow through a heavily faulted Ordovician shale and sandstone bedrock succession (Figure 1) and are separated from surface groundwater. The depth of circulation is unknown but historical records report spring water in mines up to 1.6 km depth [10]. The aquifer is overlain by basalts from the Newer Volcanics Province, active from 4.5 Ma to 5000 a [11]. CO₂ is reportedly mantle-sourced, based on the close proximity of the springs to eruptive centres [12], ³He/⁴He gas data [13] and DIC (dissolved inorganic carbon) δ¹³C isotope ratios [9]. Spring water is high in HCO₃⁻, Ca²⁺, Na⁺ and Mg²⁺ but there is a significant solute variation between individual springs [9,14].
Figure 1. Map of the CO₂-rich mineral springs in the Daylesford-Hepburn region in central Victoria, Southeast Australia (adapted from Cartwright et al. [9]). The Ordovician basement (light yellow) is dissected by deep basement faults and overlain by recent basalts (pink). Mineral springs (studied ones by Cartwright et al. [9] in green) are in close proximity to major faults and eruptive centres.

1.2. Oxygen isotope change in spring waters

Cartwright et al. [7] reported highly variable oxygen (δ¹⁸O) and hydrogen (δD) isotope compositions from sampled springs in the Daylesford-Hepburn region (Figure 2). Stable isotope compositions are reported as delta notations in ‰ deviation relative to V-SMOW (Vienna-Standard Mean Ocean Water) according to Equation 1, where R represents the oxygen isotope (¹⁸O/¹⁶O) and hydrogen isotope (²H/¹H) ratios of samples and standards, respectively.

\[
\delta_{\text{sample}} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000
\]

(1)

The mineral water stable isotope ratios range from -7.8 to -5.8‰ V-SMOW for δ¹⁸O and -44 to -31.8‰ V-SMOW for δD. Importantly, the spring waters show a depletion in δ¹⁸O values in comparison to the LMWL, without a change in δD (Figure 2). Based on the principle presented in D’Amore and Panichi [15] to explain changes in the δ¹⁸O-δD composition of groundwater, such an isotopic shift can be the result of CO₂-water isotopic equilibrium exchange or low-temperature water-rock reactions.
2. Methods

Mineral dissolution and precipitation reactions were simulated for three CO₂-rich springs (Sailors 1-3) in the Daylesford-Hepburn region using the geochemical modelling software PHREEQC [16] and the mineral spring geochemistry dataset published in Cartwright et al. [9] to test if precipitation of secondary minerals (clays) can explain the observed water δ¹⁸O depletion. CO₂-promoted anorthite, forsterite and albite dissolution reactions represent the potential reactive minerals in Ordovician metasediments and Quaternary basalts as previously reported by Weaver et al. [14]:

\[
\text{CaAl}_2\text{Si}_2\text{O}_8 + 4\text{H}_2\text{O} + 2\text{CO}_2 \rightarrow \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + 2\text{HCO}_3^- + \text{Ca}^{2+} \tag{2}
\]

Anorthite → Kaolinite

\[
\text{Mg}_2\text{Si}_4\text{O}_8 + 4\text{CO}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Mg}^{2+} + 2\text{HCO}_3^- + \text{SiO}_2 \tag{3}
\]

Forsterite

\[
2\text{NaAlSi}_3\text{O}_8 + 3\text{H}_2\text{O} + 2\text{CO}_2 \rightarrow \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + 4\text{SiO}_2 + 2\text{Na}^+ + 2\text{HCO}_3^- \tag{4}
\]

Albite → Kaolinite

All reactions were modelled using equations (2)-(4) and the weighted average Melbourne precipitation water (2007 – 2011) [17] as baseline water at 25 °C (Table 1). Water was reacted with fixed amounts of forsterite, albite and anorthite while maintaining equilibrium with kaolinite (Table 2).
Table 1. Weighted averages of monthly major ions concentrations in Melbourne, Australia (May 2007 - December 2011) [17].

<table>
<thead>
<tr>
<th>pH</th>
<th>Total Alkalinity (meq/L)</th>
<th>Cl⁻ (mg/L)</th>
<th>SO₄²⁻ (mg/L)</th>
<th>Ca²⁺ (mg/L)</th>
<th>K⁺ (mg/L)</th>
<th>Mg²⁺ (mg/L)</th>
<th>Na⁺ (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.85</td>
<td>0.12</td>
<td>5.36</td>
<td>1.76</td>
<td>1.14</td>
<td>0.48</td>
<td>0.42</td>
<td>3.11</td>
</tr>
</tbody>
</table>

Table 2. PHREEQC input parameters used for the water-rock reaction simulations for the Sailors springs.

<table>
<thead>
<tr>
<th>Sailors springs</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(PCO₂(aq))</td>
</tr>
<tr>
<td>Albite (mol)</td>
</tr>
<tr>
<td>Forsterite (mol)</td>
</tr>
<tr>
<td>Anorthite (mol)</td>
</tr>
<tr>
<td>Kaolinite (mol)</td>
</tr>
<tr>
<td>Quartz (mol)</td>
</tr>
</tbody>
</table>

3. Results

The geochemical simulations of reacting small amounts of anorthite, albite and forsterite with a defined CO₂ partial pressure while maintaining equilibrium with kaolinite and quartz closely match the published Ca²⁺, Na⁺, Mg²⁺, HCO₃⁻ and CO₂ contents of the springs (Figure 3). In the modelled scenario for the Sailors springs, the total amount of kaolinite produced by albite and anorthite dissolution is 0.018 mol/L which represents 0.02% of the total oxygen in 1 litre of water.

![Figure 3. Ca²⁺, Na⁺, Mg²⁺, HCO₃⁻ and CO₂ contents (mg/L) and pH of geochemical model (green bar) compared to Cartwright et al. [7] measurements from Sailors springs (grey bars). Silicate dissolution and clay precipitation simulation closely matches that the observed chemistry of Sailors springs.](image)

4. Discussion

The fraction of oxygen involved in the modelled mineral reactions is too small to meaningfully influence the oxygen isotope ratio of the water body. Consequently, water-rock reactions cannot account for the depleted δ¹⁸O values observed in Daylesford-Hepburn springs. CO₂ is in excess in the water, confirming results reported by Weaver et al. [14]. Mineral reactions are promoted by CO₂ but the water contains much more CO₂ than needed to account for the dissolution and precipitation reactions, meaning that the limiting factor in terms of cation and bicarbonate concentration is the availability of reactive minerals and not the CO₂ concentration. Since we can exclude mineral reactions as a source of oxygen to the waters, we assess the amount of CO₂ required to achieve the δ¹⁸O_H₂O change observed in Daylesford (-1.7‰).
The magnitude of the shift in the water in contact with CO₂, $\delta^{18}O_{H2O}$, relates to the fraction of oxygen sourced from CO₂ in the system (X_{CO2}^o). The extent to which CO₂ can change water depends on the:

- Initial $\delta^{18}O$ value of CO₂ ($\delta^{18}O_{CO2}^i$)
- Initial water $\delta^{18}O$ calculated from the LMWL ($\delta^{18}O_{H2O}^i$)
- Relative proportions of CO₂ and H₂O equilibrating (X_{CO2}^o)
- Temperature-dependant isotopic enrichment factor (ε)

This relationship is expressed in equation (5) [5]:

$$\delta^{18}O_{CO2}^i = \frac{\delta^{18}O_{H2O}^i - (\delta^{18}O_{H2O}^i - \delta^{18}O_{H2O}^i(1-X_{CO2}^o))}{X_{CO2}^o} + \varepsilon$$

(5)

The value of $\delta^{18}O_{CO2}^i$ in the Daylesford-Hepburn region is unknown. Thus we use a range of possible isotopic values for scenarios where CO₂ is sourced from mantle degassing [18] and where the CO₂ interacting with the reservoir waters have similar isotopic composition compared to nearby produced CO₂, such as the Caroline CO₂ field in Mount Gambier, SA [19] (Figure. 4). The fraction of oxygen sourced from CO₂ necessary to explain the oxygen isotope shift ranges between 7 and 12% for the maximum observed $\delta^{18}O_{H2O}$ values.

![Figure 4](image)

Figure 4. $\Delta \delta^{18}O_{H2O}$ relative to X_{CO2}^o, expressed as % following equilibrium oxygen isotope exchange with CO₂ in the Daylesford-Hepburn springs region. Range of potential $\delta^{18}O_{CO2}^i$ values (grey filling for mantle degassing [18], solid black line for Caroline CO₂ field in South Australia [19] result in a range of 7 – 12% oxygen sourced from CO₂ to account for maximum observed shift of -1.7‰ in $\delta^{18}O_{H2O}$ (dotted line).

In CCS settings, where the baseline $\delta^{18}O_{CO2}^i$ values are known, this method can be used to quantify the amount of CO₂ that water interacted with. This simple model uses a closed system two-component mixing approach. In reality, both CO₂ and water move through the system at different rates. If CO₂ moves through a relatively stagnant water body at a continuous rate and degasses at the surface, the calculated X_{CO2}^o ranges represent the amount of CO₂ the water has interacted with rather than the amount of CO₂ currently present in the system. Consequently, our estimated range of fraction of oxygen sourced from CO₂ can be taken as a maximum value.
5. Conclusions

Mineral reaction modelling is a simple technique to assess the effect of primary mineral dissolution and secondary mineral precipitation on the mineral water oxygen isotope composition. A water $\delta^{18}O$ depletion relative to the Local Meteoric Water Line has been observed in CO$_2$-rich spring waters from the Daylesford-Hepburn region in central Victoria, Australia. This isotopic shift could be explained by either low-temperature water-rock reactions or CO$_2$-water equilibrium isotope exchange. Our geochemical modelling approach using published information from the Sailors springs in the Daylesford-Hepburn region shows that low-temperature water-rock reactions are unlikely to explain the observed water $\delta^{18}O$ depletion. Hence, we propose that the mineral spring water $\delta^{18}O$ values can be explained by oxygen isotope exchange with free-phase CO$_2$. This finding supports CO$_2$ injection field and laboratory experiments during which oxygen isotopes have been successfully used to track CO$_2$ migration in the subsurface. Our case study demonstrates that the water stable isotopic composition in CO$_2$-rich mineral springs can be used as a monitoring tool for studying the interaction with CO$_2$ in a shallow aquifer when CO$_2$-water ratios are high and when initial CO$_2$ and water $\delta^{18}O$ values are sufficiently different.

References
