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Abstract

Motivated by the need to support effective asset management of infrastructure
systems, this paper presents a novel reliability model for a load-sharing system
where the operator can adjust component work load to balance system degradation.
The operator intervention effect, combined with other system complexities, makes
modeling reliability interesting and challenging. We first develop cost modeling
for a load-sharing system that has experienced operational service at the time of
analysis. The system replacement process is modeled as a delayed renewal process
for which the expected operational cost of the system is derived. A numerical
algorithm is proposed to compute the cost, and the error bound is shown to be
of order O(n−1). Next, we extend modeling to consider multiple heterogeneous
systems located at different sites within the infrastructure network. Heterogeneities
here refer to possible cross-site differences in the operating environments and the
operators’ actions. When the heterogeneities are observable, we model as covariates;
otherwise, we model as random effects. Statistical inference methods are developed
for the proposed models. An example using real data from a water utility illustrates
the logical model behavior given parameter choices as well as showing how analysis
might inform asset management.
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cess, load-sharing system.

Acronyms

RGF Rapid gravity filter
CWL Cumulative work load
RS Riemann-Stieltjes
SF Survival function

∗This work is supported in part by Natural Science Foundation of Jiangsu Province under grant
BK20180232, in part by Natural Science Foundation of China under grants 71871191 and 71771221,
in part by the China Scholarship Council (No. 201506230136), and in part by the National Research
Foundation of Singapore under the Campus for Research Excellence and Technological Enterprise (CRE-
ATE). Qiuzhuang Sun and Zhi-Sheng Ye are with the Department of Industrial Systems Engineering and
Management, National University of Singapore, Singapore, 117576. Matthew Revie and Lesley Walls
are with the Department of Management Science, University of Strathclyde, Glasgow, G1 1XW, U.K.
(Corresponding author e-mail: yez@nus.edu.sg.)

1



PDF Probability density function
CDF Cumulative distribution function
IG Inverse Gaussian
MLE Maximum likelihood estimator

Notations

T Time to degradation failure of the system
Xi CWL-to-degradation failure of component i
S CWL-to-degradation failure of the system
U(t) CWL to the system at t
N Number of components in a system
z Time that system has been in operational service

at t = 0
u CWL at t = 0
y Annual average turbidity
C(τ) Expected cost over mission time τ
µ Mean of the IG distribution for Xi

λ Shape parameter of the IG distribution for Xi

γ Scale parameter of accumulation of the CWL
process

v Shape parameter of accumulation of the CWL
process

CO Operational cost of a system component
Cr Replacement cost of a system component
Cs Fixed system replacement cost

1 Introduction

An infrastructure system, such as a wind farm, water treatment works or power sta-
tion, can consist of multiple functionally-identical components that synergistically work
together and share the total load to the system. In order to achieve reliable system
functioning, components are designed to be highly reliable in the sense that they sel-
dom suffer from sudden failures. Nevertheless, components might degrade gradually with
usage. Degradation in the condition or performance of a component can be measured
using sensors, e.g., vibration frequency of a machine [1], wear particles in the lubrication
oil [2], and the erosion level of an induction furnace [3]. Without accurate measurement,
degradation can also be perceived visually, e.g., pitting corrosion on a turbine blade and
clustering of the sand in rapid gravity filters of a water filtration process. A component is
replaced when the degradation level is deemed unacceptable, which is commonly known
as a degradation failure [4, 5]. A review on degradation analysis can be found in [6].

For the infrastructure systems of interest, the number of components is determined to
ensure the system is capable of handling peak demand. However, during off-peak periods
the reduced demand means not all components may be required to operate and the
system work load is lowered. A rational strategy is to selectively not operate components
with the highest degradation levels in order to balance the chronological lifetimes of all
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components. Using this work load adjustment strategy implies that the degradation levels
of all components are managed and maintained at a similar level. Specifically, we have
observed this degradation management strategy for rapid gravity filters (RGFs) which
are used during the water filtration process in water treatment works. For RGFs, as well
as other critical components, the water utility have adopted this approach for several
reasons. First, the fixed replacement cost is high relative to the variable cost. Therefore,
by managing the degradation of all RGFs used within a water filtration process, the
performance of these components can be kept approximately at the same level, and they
can be replaced collectively when the performance is deemed unsatisfactory. Second,
all RGFs are required to be working in order to handle the peak demand. Many water
treatment works have multiple RGFs, and the failure of one or more components within
the system impacts the ability to handle the peak demand. The loss of this service level
is regarded as a system failure.

In this study, we propose the work load adjustment strategy discussed above and
exemplified in the context of a water filtration process. The work load adjustment strat-
egy can be generalized to a wider class of infrastructure systems which involves human
operators with the ability to make process interventions. Such systems can be regarded
as load-sharing systems, since the components share the total work load of the system
according to a defined set of load-sharing rules [7–10]. Reliability modeling of a load-
sharing system with managed component degradation is challenging because components
in the system are used intermittently.

Previously, Ye et al. [11] proposed a framework to model reliability based on the con-
cept of cumulative work load (CWL). As shown in Fig. 1, the framework consists of
three steps. The first step focuses on the CWLs-to-failure, initially at component level
then the aggregation of component CWL-to-failure to obtain the system CWL-to-failure.
The second step obtains the CWL process for the system. The last step combines the
system CWL-to-failure distribution and the CWL process to reach the time-to-failure of
the system. The merits of this framework are as follows. First, components are used in-
termittently and thus it is not appropriate to use the chronological time scale. The CWL
reflects the component usage, which affects the degree of component degradation. Second,
data can be more routinely recorded for the CWL process to the system and the compo-
nent CWLs-to-failure, meaning that data are likely to be available to populate the model.
Third, the model allows us to obtain the system CWL-to-failure from data captured for
the component CWLs-to-failure. For example, when a system comprising multiple com-
ponents is replaced because the managed degradation levels of all components are beyond
an acceptable threshold, then we have multiple component CWLs-to-failure. Statistical
inference based on the component CWLs-to-failure will be more accurate given the data.
Even if empirical records are not available, then subject matter expertise can be elicited
from, say, relevant operators who can reason through the probabilistic uncertainties in
the CWL-to-failure based on their greater understanding and experience of component,
rather than system, failures [12].

Based on the framework in Fig. 1, the model in [11] is able to predict the expected
cost of a new system within a given mission time. However, this model has two limita-
tions. First, the model is relevant for new systems only; it is not able to model systems
which have accumulated operational experience and partial degradation. The existing
model can support decisions taken by a utility when introducing new assets during, for
example, new or replacement installations by determining the optimal number of compo-
nents for the system [11]. However, the model is not able to support decisions regarding
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Figure 1: A framework for a load-sharing system with managed component degradation
proposed in [11].

the management of assets of varying experience and degrees of degradation. For exam-
ple, a water utility may have RGFs with different operational experience between water
treatment works. Second, the model does not have the capability to represent situations
where there are multiple systems, each with one or more components that are operated
simultaneously, and a centralized maintenance resource allocation process. For example,
consider the geographical dispersion of the sites of water treatment works, i.e. the sys-
tem, for which we want to model the RGFs as key components. The heterogeneity in site
location implies variation in environmental factors which can impact, for example, input
water quality and volume. Asset managers tend to believe that for the same volume of
water processed, sites which process water with higher levels of impurity will degrade
faster. Additionally, each water treatment works will typically have its own operators.
The experience and skill of the operators can also vary and so it is reasonable to assume
that sites processing the same volume of water with identical levels of impurity may
degrade at different rates due to operator effects.

In view of these two deficiencies, this study extends the model of [11] in two distinct
ways. First, we develop a cost prediction model for an in-service system. Second, we
develop a model to capture the differences in the degradation of components across mul-
tiple systems. A random effect model is developed to incorporate the impact of influential
factors that contribute to the rate of degradation. For both model developments, statis-
tical inference of the necessary parameters are discussed. The first model development
provides expected cost predictions which can aid understanding of future failure profiles
and hence resource implications for asset management. The second model development
extends the analytical capability to account for the effects of influencing factors so that
more meaningful comparisons can be made between systems which are competing for
resource.

The contribution of this paper is twofold. Scientifically, the development of the model-
ing methodology makes a distinctive contribution to the existing literature on reliability
models for load-sharing systems. More practically, the models are aligned with asset
management having been motivated by and illustrated using industry data from a water
utility. Indeed in reality, this research has been conducted to support analytical special-
ists within the water utility by providing more advanced modeling methods, from which
decision support tools for asset managers can be created.

The remainder of this paper is organised as follows. Section 2 presents the key as-
sumptions underpinning the modeling approach. Section 3 develops a cost model for a
system with components that have been in operation for a period of time. Section 4 mod-
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els the impact of influencing factors in changing the component CWL-to-failure. Section
5 presents inference methods for both a single system and multiple systems. Section 6
illustrates the logical behavior of the model as well as showing the principles of analysis
to aid asset managers. Section 7 concludes and shares suggested further work.

2 Model Setting for a Single System

Consider a system with N functionally-identical components. Assume that the compo-
nents are subject to degradation failures only. Our model is based on the concept of
CWL. The motivation for using the CWL concept is that the cumulative usage of a com-
ponent induces its degradation and CWL can be observable in practical contexts. We
assume the failure rate of a component increases in its CWL, and the CWL-to-failure is
different for each component. Hence we model the CWL-to-failure as a random variable.
While CWL can be considered a measure of cumulative exposure as used in, for exam-
ple, [13] who described the effect of a dynamic covariate on the failure time distribution,
our study models the cumulative work load as a stochastic process, which is based on a
physical interpretation of degradation of a system of components. Interested readers may
refer to [11] for a detailed illustration of the CWL-to-degradation-failure framework. In
general, the following assumptions are used for a single system.

• The CWL to the system is a monotone increasing stochastic process U(t); t ≥ 0,
which has stationary increments. That is, for t, s > 0, U(t+s)−U(s) is independent
of U(s), has positive support, and has the same distribution as U(t). Here t = 0
stands for the date of analysis (say, today), which is different from the installation
date of the system.

• During system operation, the operator dynamically allocates the work load to the
components based on the work load magnitude and the component degradation
levels. Through the work load adjustment, the degradation levels of all components
are managed so that the time to degradation failure of each component does not
differ too much from each other.

• The component CWL-to-degradation-failuresXi, i = 1, . . . , N , are independent and
identically distributed (i.i.d.) and follow an inverse Gaussian (IG) distribution, i.e.,
Xi ∼ IG(µ, λ), µ, λ ≥ 0, with probability density function (PDF) and cumulative
distribution function (CDF) as

fIG(x;µ, λ) =

(

λ

2πx3

)
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2

exp
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for x > 0, where Φ(·) is the standard normal CDF.

We briefly discuss the justification for the above assumptions. We assume components
only suffer degradation failures. This assumption is commonly used for systems or prod-
ucts when the wear/degradation dominates failure, e.g., the contact image sensor of fax
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machines [14], the railway tracks [15], and the print head of color printers [16], to name a
few. In the industry problem we consider in Section 6, the component subject to failure
is the RGFs in a water utility. RGFs are used to filter impurities from raw water. The
wear of RGFs occurs during the usage and, as a result, assuming that components are
mainly subject to degradation-induced failures is reasonable. Further, we assume a com-
ponent fails when its cumulative work load exceeds a random threshold and propose that
this framework may be more flexible to characterize the failure behavior compared with
the models traditionally reported in the literature, where the component fails when its
observable degradation level exceeds a fixed failure threshold. Following [11], we assume
the IG distribution can provide a reasonable model for the CWL-to-degradation-failure.

Based on the CWL framework, the system fails when the system CWL U(t) exceeds
the random threshold S ≡∑N

i=1Xi, which can be readily shown to follow an IG distribu-
tion S ∼ IG(Nµ,N2λ) [11]. This random variable S is the system CWL-to-degradation-
failure. On the other side, we can use Gamma process, IG process or compound Poisson
process to model the system CWL process U(t). If the variation of the CWL process is
small, we may use a linear function to approximate the CWL process. As an example, if
the CWL process follows a Gamma process with scale parameter γ and shape parameter
v, then the PDF of the system CWL at time t is given by

gU(t)(u; vt, γ) =
uvt−1

Γ(vt)γvt
exp

(

−u
γ

)

, u > 0. (1)

3 Cost Analysis of an In-Service System

For an in-service system, we treat the replacement process as a delayed renewal process.
This section derives the expected cost for such a system that has been operational for a
period of time at t = 0. An algorithm is proposed to compute the renewal function. The
rate of convergence of the numerical error is shown to be O(n−1).

3.1 The replacement process – a delayed renewal process

At time t = 0, the (N -component) system of interest may have been in operation for a
period of time. For this system, the replacement process constitutes a delayed renewal
process {Y, T1, T2, · · · } with the i.i.d. inter-replacement times Ti, i = 1, 2, · · · , and the
first replacement time Y following a different distribution. Here, Y can be regarded as
the remaining useful life of the system. The distribution of Y depends on how long the
system has been in use and how much work load it has processed. If we only know that
the system has been in operation for z units of time at t = 0, the distribution of Y is
given by

FY (t) = Pr(T > t+ z|T > z) =
FT (t+ z)− FT (z)

1− FT (z)
.

If in addition to the operation time z, the CWL of the system at time t = 0 is available,
then we can have a more accurate estimation for Y because the lifetime of the system is
determined by its usage. Denote the CWL at t = 0 as u and thus the CWL at time t is
U(t) + u. Given u at time 0, the distribution of Y can be computed as

FY (t) = Pr(S < U(t) + u|S > u) =
Pr(u < S < U(t) + u)

Pr(S > u)
.
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The numerator can be expressed as Pr(u < S < U(t)+u) = Pr(S < U(t)+u)−Pr(S < u),
where Pr(S < u) is simply the CDF of the IG random variable IG(Nµ,N2λ), while
Pr(S < U(t) + u) can be evaluated as

Pr(S < U(t) + u) =

∫ ∞

0

FS(v + u)gU(t)(v)dv. (2)

3.2 Expected cost over a finite time horizon

Based on the above assumption, the replacement consists of a delayed renewal process
{Y, T1, T2, · · · }, where the system starts anew after each replacement. Let N(t) be the
number of system replacements at time t, and m∗(t) = E[N(t)] is the renewal function
for the delayed renewal process. Suppose that the unit time operation cost of an N -
component system is NCO, depending on the number of components. When the system is
replaced because of unsatisfactory performance, the replacement cost includes the price of
each component, denoted by Cr, and a fixed system replacement cost, denoted by Cs. All
the components are replaced at the same time for the two reasons as discussed in Section
1. The simultaneous replacement can be achieved through the work load adjustment by
operators. In our case study in Section 6, the RGFs degrade/wear gradually with usage.
The degradation level of the filtering media cannot be measured precisely. Nevertheless,
an operator can assess the degradation level by directly observing the filtering media.
For example, dark spots and darkening of the media on visual inspection indicate that
the RGF is aging. The measurements of output water quality from the RGFs can also
help to assess the degradation level. Operators then select which RGF(s) to use based
on their observation of the RGF degradation levels. Under this strategy, the degradation
levels of all RGFs are balanced, so that all RGFs in a system fail approximately at
the same time. The replacement time is assumed negligible compared with the time-
to-degradation-failure of the system. The expected cost of an existing system operating
within a predetermined time horizon τ can be expressed as

C(τ) = NτCO + (NCr + Cs)m
∗(τ). (3)

The expected cost (3) involves the delayed renewal function, which has to be evaluated
numerically. Here we develop a numerical procedure to compute the delayed renewal func-
tion. The procedure is based on the Riemann-Stieltjes (RS) sums method by partitioning
[0, τ ] into n sub-intervals.

We now consider the following delayed renewal process {Y, Z1, Z2, . . . , Zn, . . .} where
Y has a survival function (SF) F̄ ∗(t) and Zn, n ≥ 1 have a SF F̄ (t). Conditional on the
first arrival, m∗(t) can be expressed as

m∗(t) = F ∗(t) +

∫ t

0

F ∗(t− x)dm(x), (4)

where m(t) is the renewal function for the renewal process {Z1, Z2, . . . , Zn, . . .} with
renewal equation

m(t) = F (t) +

∫ t

0

F (t− x)dm(x). (5)

Xie [17] proposed a simple numerical method to compute m(t) based on the RS sums. To
use this method, the interval [0, τ ] is uniformly divided with 0 = t0 < t1 < . . . < tn = τ .
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Then m(tj), 1 ≤ j ≤ n, can be numerically calculated iteratively. Its expression was
derived by [17] and is given by

m̃(tj) =
F (tj) +Gj − F (tj − tj−1/2)m̃(tj−1)

1− F (tj − tj−1/2)
, (6)

where m̃(t0) = 0, tj−1/2 = (tj−1 + tj)/2 and Gj =
∑j−1

k=1 F (tj − tk−1/2)[m̃(tk)− m̃(tk−1)].
We use m̃(ti) to indicate that it is a numerical approximation of m(ti). Once m̃(t1),
m̃(t2), . . ., m̃(tj) are calculated, we can approximate m∗(tj), 1 ≤ j ≤ n based on the RS
sums method, which is given by

m̃∗(tj) = F ∗(tj) +

j
∑

k=1

F ∗(tj − tk−1/2)[m̃(tk)− m̃(tk−1)].

According to our numerical experience, the above numerical method for m∗(tn) is very
accurate. The following theorem shows that the approximation error of the numerical
procedure is O(n−1). The proof is given in the appendix.

Theorem 1. Suppose F (·) is twice differentiable in the interval [0, τ ] with first derivative

f and bounded second derivative, and m(·) and F ∗(·) are differentiable in [0, τ ] with

bounded derivatives. If max{ti − ti−1; i = 1, 2, · · · , n} = O(n−1), then m∗(tn)− m̃∗(tn) =
O(n−1).

4 Heterogeneities of Multiple Systems

In situations where multiple systems of the same type exist, there can be system-to-system
differences in their degradation profiles. For example, a water utility has multiple water
treatment sites and the raw water quality in one water treatment site may be significantly
different from another site in a different location. Given the same functional performance
of the filtering media, the CWL process depends on the quality of the raw water. It is
expected that the more impurities in the raw water, the faster the degradation rate of the
media and thus the shorter the CWL until failure. This implies that the quality of raw
water affects the CWL-to-failure of a filter. Other possible causes of the heterogeneities
include operators and environments. They are called influential factors in our study.

If information about the influential factors is available, then we can treat them as a
covariate and incorporate into the component CWL-to-failure distribution. We assume
that the influential factor is constant at a site. For example, data is available on incoming
raw water quality to each water treatment site, hence we can model this factor as a
constant y in a site, where a higher y means a better quality of the raw water, i.e., slower
degradation of the RGF. Recall that the component CWL-to-failure X ∼ IG(µ, λ). The
convention to model covariates is to let some parameters in the distribution of X be an
increasing function of y. A larger y leads to a larger CWL-to-failure X in general, while
E[X] = µ. Therefore, we can assume µ to be a function of y. Some common choices for the
link function between y and µ are the power law, the Arrhenius law and the exponential
law [18,19]. An appropriate link function can be determined based on expert knowledge,
or from data analysis. Suppose that we have chosen the power law, i.e., µ = ayb, where
a, b > 0 are parameters. Then the system CWL-to-failure S ∼ IG(Nayb, N2λ).

If we do not have enough information on the impact of the influential factors (e.g.,
data have not been collected for each site), then the impact of the covariate becomes an
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unobserved factor that affects the CWL-to-failure of a filter. Unobserved factors affecting
the CWL-to-failure of a RGF include the skills of operators and local site environments.
For example, high operator skill affects key process steps such as the quality of the back-
wash, which is a regular procedure to cleanse the media. If the media is less clean, then
the RGF needs to work harder and therefore degrades faster. Systematic difference in the
CWL process between water treatment sites can occur because different locations serve
areas with different population size and thus different demand rates. Local environments,
e.g., humidity and temperature, also affect the demand rate and the CWL process.

The unobservable factors in the CWL process and the CWL-to-failure of the compo-
nents (e.g., the RGFs) can be captured by random effects. Essentially, the random effects
are unobserved covariates which vary over sites. The random effect in each unit is fixed
yet unknown (e.g., the impurities of the raw water), and different units have different
realizations of the random effects [20–24]. A special case of random effects is the frailty,
which assumes the unobserved covariates have a multiplicative effect on the baseline fail-
ure rate [25, 26]. For a comprehensive overview of frailty models, see, for example, [27].
In the following, we discuss how to use random effect model to capture these unobserved
factors.

First of all, we discuss incorporation of random effects in the lifetime distribution
for the component CWL-to-failure. For a system, we have assumed that the component
CWL-to-failure X ∼ IG(µ, λ) while the system CWL-to-failure S ∼ IG(Nµ,N2λ). The
environmental factors, (e.g., the raw water impurity) influence the means of X and S.
Therefore, we can assume that µ is fixed and unknown for each site, and is random
across all sites. The distribution of µ can be obtained from data analysis, as discussed in
Section 5, or from expert knowledge [28]. One convenient method is to use the conjugate
prior, which assumes 1/µ ∼ N (υ, σ2). To derive the component CDF of the system
CWL-to-failure in this case, we need the following lemma.

Lemma 1. Suppose Z ∼ N (υ, σ2). Then we have

E[Φ(aZ + b)] = Φ

(

aυ + b√
1 + a2σ2

)

(7)

and

E[ecZ+dΦ(aZ + b)] = exp

(

cυ + d+
1

2
c2σ2

)

× Φ

(

aυ + b+ acσ2

√
1 + a2σ2

)

, (8)

where a, b, c and d are arbitrary constants.

The proof of Lemma 1 is given in the appendix. With the lemma, we can obtain the
component CDF of the system CWL-to-failure as

FX(x) = Φ

(

υx− 1
√

x/λ+ λσ2

)

+ exp
(

2λ+ 2λ2σ2
)

Φ

(

−(υ + 2λσ2)x− 1
√

x/λ+ λσ2

)

. (9)

The detailed procedure to derive Equation (9) is also given in the appendix. It should
be noted that conditional on the random effects µ, the CWLs-to-failure of components
in the same system are independent. However, they are dependent unconditionally. The
CDF of system CWL-to-failure can be computed by integrating µ out of IG(Nµ,N2λ),
which yields

FS(s) = Φ

(

υx−N
√

x/λ+N2λσ2

)

+ exp
(

2N2λ+ 2N2λ2σ2
)

Φ

(

−(υ + 2Nλσ2)x−N
√

x/λ+N2λσ2

)

.
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Next, we explain how we might capture random effects on the work load accumulation
process for the cases of the Gamma process. We may assume that the CWL to system
follows the Gamma process U(t) ∼ gamma(vt, γ) with the PDF given in (1). Note that
the mean of U(t) is γvt. We have argued that different sites will have different demand
rate and so different accumulation rates for the CWL. Therefore, we may assume that γ is
different across sites. A tractable model results when γ−1 follows a Gamma distribution
with γ−1 ∼ gamma(κ, φ−1). Integrating γ out of Equation (1) yields the unconditional
distribution of U(t) as

gU(t)(u) =
φκΓ(vt+ κ)uvt−1

Γ(κ)Γ(vt)(φ+ u)vt+κ
.

5 Statistical Inference

5.1 Single system

First we return to the scenario where we consider only one system (e.g., a water treat-
ment site) which implies the random-effects model is not necessary. Under this scenario,
we need to estimate the CWL-to-failure distribution and the CWL process. The CWL-
to-failure distribution can be estimated using the usage data of each component upon
replacement. Such usage data are available, e.g., from a meter embedded in the compo-
nent. Let {x1, x2, · · · , xN} be the CWL-to failure of N components, e.g., from several
replacements. Inference for the IG distribution has been well-addressed in the literature,
e.g., Section 11.4 in [29]. We briefly recapitulate the procedure here. The log-likelihood
function, up to a constant, is

l(µ, λ) =
1

2
N lnλ−

N
∑

i=1

λ(xi − µ)2

2µ2xi
. (10)

Maximizing this function yields the maximum likelihood estimators (MLEs) of µ and λ
as µ̂ = x̄, the average of xi, and λ̂ = N/

∑N
i=1(x

−1
i − x̄−1).

To estimate the CWL process, suppose we collect the CWL periodically, say, every
day or every week. Let U = {u1, u2, · · · , uK} be the consecutive CWL measurements
from period 1 to period K and ∆u = {∆u1,∆u2, · · · ,∆uK} be the increments, i.e.,
∆ui = ui − ui−1 with u0 = 0 for convenience. Because we have assumed that the process
has stationary increments and the data collection interval is constant, the increments
∆ui should be i.i.d. samples. If we assume the CWL accumulation is a Gamma process,
then we can use a Gamma distribution to fit ∆u. Let ∆t be the collection time interval.
Then the increments follow Gamma(v∆t, γ) and thus the log-likelihood function, up to
a constant, is given by

l(v, γ) = K[v∆t ln γ − ln Γ(v∆t)] + v∆t
K
∑

i=1

ln∆ui − γ

K
∑

i=1

∆ui.

The MLE can be obtained by first solving ln(v∆t/ū) + ln u = ψ(v∆t) for v̂, where ψ(·)
is the digamma function, and ū and ln u are averages of ui and ln ui, respectively. Then
γ̂ is given by γ̂ = v̂∆t/ū.
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5.2 Multiple systems

Now consider the situation where we model multiple sites. If the raw water quality for
each site is available then we can treat this factor z as a covariate and assume that µ is a
function of y. Suppose that we choose to use the power law relation µ = ayb, and that data
onM sites are available. For the ith site, the CWL-to-failure data are {xi1, xi2, · · · , xiNi

}
and the raw water quality level is yi; and suppose the CWL process is observed at time
epochs {ti1, ti2, · · · , tiKi

} with the associated CWL ui = {ui1, ui2, · · · , uiKi
}. Then the

log-likelihood function is a slight modification of (10):

l(µ, λ) =
M
∑

i=1

[

1

2
Ni lnλ−

Ni
∑

j=1

λ(xij − aybi )
2

2(a2y2bi )xij

]

. (11)

If the raw water quality is not observed, we use the random-effects models to capture
the differences in the component CWL-to-failure distribution between different sites. De-
note ωi1 =

∑Ni

j=1 xij, ωi2 =
∑Ni

j=1 x
−1
ij and ωi3 =

∑Ni

j=1 ln xij . We then use the following
lemma to derive the log-likelihood function.

Lemma 2. Let Z ∼ N (υ, σ2). Then we have

E

[

exp

(

−1

2
(aZ2 + 2bZ + c)

)]

=

{

(1 + aσ2)−
1

2 exp
[

−2bυ+aυ2−b2σ2

2(1+aσ2)
− 1

2
c
]

, a > −σ−2;

∞, a < −σ−2.

Proof of the lemma is straightforward and thus it is omitted here. The log-likelihood
function, up to a constant, can be then expressed as

l(λ, υ, σ2) =
1

2

M
∑

i=1

{

Ni lnλ− ln(1 + λσ2ωi1)

− λωi1υ
2 − 2Niλυ −N2

i λ
2σ2

1 + λωi1σ2
− (λωi2 + 3ωi3)

}

. (12)

Detailed derivation of (12) is given in the appendix. Direct maximization of this function
yields the MLEs of the three parameters.

We now discuss statistical inference of the CWL process given that there are random-
effects between different sites. Since we assume that the system CWL process follows the
Gamma process with random effect, the likelihood function is given by

l(v, κ, φ) =
M
∑

i=1

κ lnφ+ lnΓ(vtiNi
+ κ) (13)

− ln Γ(κ)− (vtNi
+ κ) ln(φ+ uiNi

)

+
M
∑

i=1

Ni
∑

j=1

v∆tij ln∆uij − ln Γ(v∆tij).

Since there are only three parameters, most optimization software packages can maximize
this function efficiently.

11



6 Example to Examine Model Behavior and Use

We use de-sensitized real data from selected water treatment sites owned by a water
utility to illustrate the application of our proposed models. Tables 1 - 3 in the appendix
provide the data for the CWL-to-failure of RGFs at fifteen water treatment sites, together
with the typical CWL per annum and the average water turbidity at each of the sites.
Turbidity is a measure of water quality and one intent of filtering is to reduce turbidity.
While turbidity will naturally vary throughout the year for each site, we have taken a
yearly average which is requisite for our example purpose since this average provides an
indicative level of the typical raw water impurity. Using monthly demand from each site
over an annual period, data which is recorded by the water utility although not shown, we
can estimate the CWL process. The raw water quality can then be treated as a covariate.
Note also that each site contains a different number of RGFs and, although not shown,
it is known that each site is of a different size, has different operators, has different work
load profiles and has filters of different ages.

Currently, the water utility forecasts the operation costs of their water treatment sites
within a 5-year time horizon, so that they can assess the variation of maintenance and
replacement spending from year to year for the multiple treatment sites. Motivated by
this, we propose a cost prediction model with the consideration of the system hetero-
geneity and the system current usage condition. Section 6.1 explains how we estimate
model parameters from the data. Section 6.2 uses these estimates to compute the failure
time distribution, the expected failure number, and the expected operational cost for a
single system, and discusses the results for site 1 with the main purpose of sense-checking
the model behavior. Section 6.3 then predicts the operational costs for multiple sites and
discusses how the findings allow us to anticipate when the peaks in the cost spending may
occur across sub-sets of the sites, and to illustrate how asset managers might gain insight
into anticipated cost and failure profiles. Section 6.4 presents some sensitivity analysis
and discusses the implications for our understanding of the model and its results.

6.1 Estimation of model parameters

We use an IG distribution with mean parameter µ = ayb and shape λ for the CWL-to-
failure of the RGF components, where y is the turbidity for the site. Based on the data,
the estimates of a, b and λ are â = 991, b̂ = −1.50 and λ̂ = 14285. These estimates are ob-
tained by numerically maximizing the log-likelihood function (11), which can be achieved
by most optimization functions in modern software, e.g., fminsearch in MATLAB.

We then use the monthly demand data to estimate the CWL process by assuming a
Gamma process with random effects. By setting the time unit as one month, the estimates
of parameters φ, κ and v are φ̂ = 98.15, κ̂ = 3.138 and v̂ = 1.038 through numerically
maximizing the log-likelihood function (13). Let tmax = 12 and Ui(tmax) be the CWL of
the ith system at the end of the year. Then γ−1

i for the ith system follows a Gamma

distribution with shape parameter v̂tmax + κ̂ and scale parameter (Ui(tmax) + φ̂)−1. We
can compute the estimates of γ for the 15 sites as

γ̂ = [118, 63.0, 119, 24.3, 36.2, 37.0, 30.4, 59.4, 39.5, 37.8, 35.9, 17.5, 23.8, 21.8, 21.7].

Based on these results, we can insert the parameter estimates into the model and
compute the expected cost. We assume that the operational cost for each component
is CO = 0.05 per year, the price of a component is Cr = 1 and the fixed replacement

12
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Figure 2: The CDF, renewal function and expected cost for Site 1 with specified years of
past operation only.

cost is Cs = 5. The units used for the time, monetary values and the CWL are in years,
thousands of pounds and trillion of litres, respectively.

6.2 Failure behavior for a single site

Consider site 1 to illustrate the behavior of the model. For site 1, the average turbidity
value is y = 1.4. From this, µ̂ = âyb̂ = 598.2. First, let us consider the situation where
the system has been in operation for a period of time prior to analysis. Suppose we know
that the system has been in operation for z years at time t = 0 and let us consider the
cases where z = 1, 2 and 5 years. The CDFs for the time to first replacement of the
system are shown in Fig. 2(a), while the renewal functions and the expected costs over
time are depicted in Fig. 2(b) and 2(c). The CDF of a new site 1 is nearly zero at the first
five years and it then increases rapidly during the time from 5 to 10 (year). Meanwhile,
the failure probability after 10 years is nearly one. Since the renewal function equals the
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expected number of failure during a time horizon, the renewal function at the first five
years should be near zero, as shown in Fig. 2(b). Similarly, the renewal function at time
10 (year) should be approximately equal one since there is a very high probability that the
system has failed before this time. The system is replaced with a new one after failure,
so there should be no failures at the first five years after the replacement. This explains
why the renewal function keeps nearly constant from 10 to 15 (year). From Equation (3),
the expected cost C(τ) is a function of the renewal function m∗(τ). When m∗(τ) keeps
nearly constant, the increase of C(τ) is mainly due to the operational cost. Because the
operational cost is much smaller than the replacement cost for a system, the increase of
C(τ) is relatively slow during [10, 15] and [20, 25] (year) for the new site, as shown in Fig.
2(c). We can also see that the CDF shifts to the left as z increases as expected, since
older systems with longer operational experience will have accrued greater degradation.

6.3 Analysis using the model for multiple sites

Now consider how the model can be developed for analytical support. Typically, there
are constrained budgets for portfolios of multiple assets. The proposed model can aid
managers to anticipate when peaks in spending might occur by providing insight about
the failure profiles of individual assets and the associated maintenance costs.

Using the same data and model as the previous section, Fig. 3 shows the degradation
failure profiles for the RGFs at the sites of five water treatment works over a 25-year
horizon. The sites vary in terms of number of RGFs as well as the age (z) and CWL
(u) at the time of analysis, t = 0. The predictions show that sites 1 and 3 are almost
certain to fail within the next 5 years, while the failure profiles of sites 11 and 15, in
particular, are shifted to the right with only a 0.5 chance of failing in around 15 and 19
years respectively. The two sites whose CDFs indicate a higher median time to failure and
greater variation are smaller in terms of the number of RGFs installed, younger in terms
of calendar age as well as CWL, and have low turbidity in comparison with the three
sites whose CDFs indicate failures are more likely to occur within a relatively shorter
time scale. Sites 1 and 3 are very similar in all respects except the number of RGFs. Site
3, which has half the number of RGFs but a similar high average turbidity level as site
1, has the most left failure profile. For site 3, there is a 0.5 chance of failure in about
2.5 years from the time of analysis compared with 4.5 years for site 1. Site 13 has fewer
RGFs but a mid-level average turbidity suggestive of a relatively high work load, and
the model predicts a 0.5 chance of failure within around 4 years. While this prediction
indicates failure may be earlier than for the largest site 1, there is greater variation in the
CDFs for site 13 compared with sites 1 and 3. For example, there is a 0.9 chance that
site 13 will fail in about 6 years but that site 1 will fail within 5 years.

Fig. 4 shows the expected cost predicted for a selection of sites, which are those
presented in Fig. 3 plus site 8. The cost profiles are based on the delayed renewal model
and it is assumed the fixed replacement cost, the annual operational cost of failure and
the price of an RGF are the same for all sites. This assumption can be readily relaxed if
financial values of different sites are all available. The expected costs profiles show how
the CDFs translate to the monetary values for sites of different sizes. Consider sites 1
and 3. The increased rate of failure over the 3 years or so from the point of analysis for
site 3 corresponds to the greater chance of failure over this planning horizon compared
with site 1. The lesser number of RGFs in site 3 compared with site 1 means that the
expected cost profile is lower and that curvature, indicative of replacement to renew the
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Figure 3: CDF for selected sites over a 25-year planning horizon.

site RGFs, is more damped. The expected cost profiles of sites 11, 13 and 15 are lower
as might be anticipated given their CDF profiles and the single RGF. Site 8 with three
RGFs and two years of past operation has a cost profile higher than those for sites 11,
13 and 15, but it is still relatively much lower than the costs predicted for sites 1 and 3.
Fig. 4 shows that it is expected £30m and £19m will be the costs associated with the
failure and replacement of sites 1 and 3, respectively. Given a specified planning horizon,
the asset manager can accumulate expected costs across sites within his portfolio.

Fig. 5 shows both the CDF and expected cost profiles for four sites, all with average
turbidity levels above the median for the set of 15 sites analyzed. Hence we focus upon
sites where the raw water quality input to the RGFs is relatively less good. Consider the
pairing of sites 1 and 2. They differ most in terms of the annual work load which for site
1 is double that of site 2, even though site 2 has the slightly higher average turbidity and
one less RGF. Thus for reasons that are not evident in the data provided for analysis, the
RGF at each of these sites are being operated in such a way that they have different work
loads. Given our earlier discussions, we can hypothesize that this could be due to the
existence of process activities (e.g., flocculation) prior to the RGF water filtering stage,
operator and /or other effects. The degree of work load appears to affect the comparative
location of the predicted failure profiles with the CDF of site 1 positioned to the left of
that of site 2. However, despite having a better failure profile, site 2 has a consistently
lower expected cost profile than site 1 with greater divergence as the planning horizon
gets longer. Similarly, consider the pairing of sites 5 and 12 which both have the same
average annual turbidity level, and whose turbidity is just above the median for the 15
sites. However, the relative work load of the RGFs at site 12 is more than four times
that of site 5. Even though the size of these sites is very different, the expected cost of
site 12 is higher than that of site 5 from year 5 onwards. This might plausibly be due
to the dominance of the higher predicted rate of degradation failure in the longer term
costing. Fig. 5 provides an illustration of how comparative analysis might be conducted
to examine the relative impact of factors over different planning horizons. Such analysis
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Figure 4: Expected cost for selected sites over a 25-year planning horizon.

allows an initial exploration of site specific effects to make an initial assessment of the
likely impact of changing work load through, for example, changes to the operational
processes.

Our analysis shows that the dynamic work load adjustment strategy leads to the
variation of the expected annual cost for each site, e.g., see Fig. 4. Since each site has
its own degradation behavior, the failure time distribution differs among the treatment
sites. As a result, different sites may have different peak years for maintenance and
replacement spending. As intended, the proposed model can predict the total cost for
each site within a given time horizon and provide asset managers with insight when peaks
in the operational cost may occur for each site.

6.4 Sensitivity analysis

To examine the sensitivity of C(τ) within the time horizon τ ∈ [0, 25], we fix the re-
placement cost, i.e., set Cr = 1 and Cs = 5 as above, but we change the unit operational
cost for one component by setting CO equal to 0.01 through 0.25, in steps of 0.01. The
expected cost C(τ) is computed for the selected sites in Fig. 3 over a 25-year planning
horizon. The results for the two extreme scenario settings are shown in Figure 6. Recall
that the operational cost during a time horizon τ is NτCO, where N is the number of
components in the site. Therefore, the variation of CO should have the most impact on
the sites with a larger N , which are sites 1 and 3 from Table 1. When the operational
cost setting is highest, CO = 0.25, then there is little variation of C(τ) from year to year
for sites 1 and 3 and we find that the total cost is around twice as large as that for the
base case where CO = 0.05. On the other hand, the total cost C(τ) is around 75% for
sites 1 and 3 when CO = 0.01, which is 20% of the one for the base case. Most strikingly,
we find that examination of all sensitivity results, although not shown, indicates that,
as the operational cost increases, then the expected cost functions become almost linear.
This phenomenon is visually illustrated in Figure 6 for the extreme cases and shows the
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Figure 5: The CDF and expected cost functions for sites 1, 2, 5 and 12.
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impact of operating cost increases in dampening the effect of capital replacement costs.
If we focus only upon smaller changes in the unit operational cost for one component,

say CO = 0.03 to CO = 0.07 for the base setting of CO = 0.05 within the full set of
sensitivity analysis, although all figures are not shown here, then we find that although
the absolute values of the expected costs change, their relative profiles do not. Especially
in the next 5-year time horizon, we find that the implications for managing assets across
the six sites remain the same. Hence within this time window, the results are insensitive
to small changes in the operational cost values.

7 Conclusions

This article has developed a cost prediction model for a load-sharing system which has
already accrued operational experience and so is a useful extension of the model originally
reported in [11]. Our model is developed for a generalization of a problem motivated by
the context of a real infrastructure system, specifically for the water treatment process.
We believe that the problem definition is also relevant for other infrastructure contexts,
such as wind farms and other power plants. Although the particularities of specific
contexts will, of course, impact some modeling choices. For example, the nature of key
influential factors and their treatment relevant to data availability, as well as the selection
of the underlying probability model. The characteristics of the problem - multiple assets,
of different ages, located at different sites, different environmental conditions and different
rates of degradation - challenge asset management planning. The modeling methodol-
ogy developed in this article can be developed to support asset managers address such
challenges in the following ways. First, by providing estimates of the expected time of
failure and cost of maintenance, the model can provide asset managers with forecasts of
spend over defined budget planning horizons. Second, the model has the potential to
allow managers to explore the likely impact of investments in other parts of the process
to change the workload on key assets and hence impact their degradation failure profile.
Finally, the model could be developed to allocate budget.

Scientifically, this article reports method developments associated with the new model.
A numerical procedure based on the Riemann-Stieltjes sums has been developed to eval-
uate the expected cost. The approximation error is shown to be of order O(n−1). The
model is also able to capture the impact of influential factors on different assets within
a portfolio. When these influential factors are observable, we treated them as covariates
and incorporated into the CWL-to-failure distribution. When they are unobservable, we
treated them as random effects. Statistical inference on the necessary parameters has
been developed for both these model variants.

We have used the Gamma process to model the CWL process of the system in this
study. We may also develop methods based on other monotone stochastic processes, such
as like IG process and compound Poisson process, for fitting the data of CWL process.
To deal with the heterogeneity associated with the systems of interest, the random effect
should be incorporated for these models. To enhance usefulness, appropriate model
selection criteria could be developed to select the best model to fit the data.
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A Technical Details

A.1 Proof of Theorem 1

For simplicity, suppose ti, i = 0, 1, · · · , n, are equally spaced and let h = ti − ti−1 = τ/n.
Abbreviate F ∗(ti), F (ti), f(ti), m(ti) and m(ti)−m(ti−1) as F

∗
i , Fi, fi, mi and ∆mi.

When x is in the interval (ti−1, ti), apply Taylor’s expansion to F (tk−x) at x = ti−1/2

to get
F (tk − x) = Fk−i+1/2 − fk−i+1/2(x− ti−1/2) +O(h2),

where k ≥ i. Because f has bounded derivative, we can find a common M1 such that the
remainder term is no larger than M1h

2 for all i. Therefore, we have

∫ ti

ti−1

F (tk − x)dm(x) = Fk−i+1/2∆mi − fk−i+1/2Ii +O(h3),

where Ii =
∫ ti
ti−1

(x − ti−1/2)dm(x). Similarly, because m has bounded derivative, we can

find a common M2 such that the remainder is no larger than M2h
3, regardless of i. In

addition, ∆mi = O(h) and thus

|Ii| ≤
∫ ti

ti−1

h

2
dm(x) = ∆mih/2 = O(h2),

where we can again find a common M3 such that the above remainder term is bounded
by M3h

2. Therefore, the renewal function mk given by (5) can be evaluated as

mk = Fk +
k
∑

i=1

[

Fk−i+1/2∆mi − fk−i+1/2Ii +O(h3)
]

. (14)

Apply the above result to m1 to see

m1 =
F1 − f1/2I1 +O(h3)

1− F1/2

.

Comparing it with (6), it is obvious that m1 − m̃1 = O(h2), and ∆m1 −∆m̃1 = O(h2).
Suppose that for 2 ≤ i < j, we have mi − m̃i = O(h),∆mi − ∆m̃i = O(h2). Based on
(14), we have Equation (15) on the top of the next page.

mj =
Fj +

∑j−1
k=1 Fj−k+1/2∆mk − F1/2mj−1 +

∑j
i=1

[

−fj−i+1/2Ii +O(h3)
]

1− F1/2

(15)

mj−m̃j =

∑j−1
k=1 Fj−k+1/2(∆mk −∆m̃k)− F1/2(mj−1 − m̃j−1) +

∑j
i=1

[

−fj−i+1/2Ii +O(h3)
]

1− F1/2

(16)

∆mj −∆m̃j =

∑j−2
k=1 ∆Fj−k+1/2(∆mk −∆m̃k) + F3/2(∆mj−1 −∆m̃j−1)

1− F1/2

+

∑j−1
i=1

[

−∆fj−i−1/2Ii +O(h3)
]

− f1/2Ij

1− F1/2

(17)
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On the other hand, the numerical approximation of mj is given by (6) as

m̃j =
Fj +

∑j−1
k=1 Fj−k+1/2∆m̃k − F1/2m̃j−1

1− F1/2

,

Therefore, their difference is given by Equation (16), which is O(h) because all the three
terms in the numerator are O(h). Since ∆mj−∆m̃j = (mj−m̃j)−(mj−1−m̃j−1), we can
have Equation (17), where ∆Fj−k+1/2 = Fj−k+1/2 − Fj−k−1/2 and ∆fj−k+1/2 = fj−k+1/2 −
fj−k−1/2. Because F and f are differentiable with bounded derivatives, ∆Fj−k+1/2 = O(h)
and ∆fj−k+1/2 = O(h). Therefore, all the three terms in the numerator of Equation (17)
are O(h2). That is, ∆mj −∆m̃j = O(h2). By induction, we have ∆mj −∆m̃j = O(h2)
for j = 1, 2, · · · , n.

Similarly, we can apply a first-order Taylor expansion to F ∗ and so the m∗(tn) in (4)
can be expressed as

m∗(tn) = F ∗(tn) +
n
∑

i=1

F ∗
n−i+1/2∆mi +O(h)

= F ∗(tn) +
n
∑

i=1

F ∗
n−i+1/2(∆m̃i +O(h2)) +O(h)

= F ∗(tn) +
n
∑

i=1

F ∗
n−i+1/2∆m̃i +O(h).

Therefore, the theorem follows.

A.2 Proof of Lemma 1

Express Z as Z = σU + υ, where U is the standard normal random variable. Then
aZ + b = aσU + aυ+ b. This means that aZ + b ∼ N (aυ+ b, a2σ2). Therefore, according
to Appendix A.2. in [30], we can have (7). On the other hand,

E[ecZ+dΦ(aZ + b)]

=

∫ ∞

−∞

1√
2πσ

exp

(

−(z − υ)2

2σ2
+ cz + d

)

Φ(az + b)dz

= exp

(

cυ + d+
1

2
c2σ2

)

×
∫ ∞

−∞

1√
2πσ

exp

(

−(z − υ − cσ2)2

2σ2

)

Φ(az + b)dz.

When a = 0, the result is obvious. When a 6= 0, let x = az + b. For both a > 0 and
a < 0, by applying the technique of integration by substitution, the above integral can
be simplified as

∫ ∞

−∞

1√
2πaσ

exp

[

−(x− b− aυ − acσ2)2

2(aσ)2

]

Φ(x)dx.

This is exactly the expectation of E[Φ(U)] where U ∼ N (aυ+ b+acσ2, a2σ2). According
to (7), the integral is equal to

E[Φ(U)] = Φ

(

aυ + b+ acσ2

√
1 + a2σ2

)

.

Combining the above results yields (8).
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A.3 Derivation of Equation (9)

The CDF of X can be computed as

FX(x) = E

[

Φ

(

x
√

λ/x
1

µ
−
√

λ/x

)

+ exp

(

2λ
1

µ

)

· Φ
(

−x
√

λ/x
1

µ
−
√

λ/x

)]

.

We have assumed 1/µ ∼ N (υ, σ2). Therefore, the above equation can be evaluated based
on Lemma 1. The result is exactly Equation (9).

A.4 Derivation of Equation (12)

The joint PDF of Xi = {Xi1, Xi2, · · · , XiNi
} conditional on µ, the fixed yet unknown

random effect for this system, is given by

fXi|µ(xi1, xi2, · · · , xiNi
|µ) =

(

λ

2π

)Ni/2

× exp

[

−1

2

(

λωi1
1

µ2
−Niλ

1

µ
+ λωi2 + 3ωi3

)]

.

We have assumed that 1/µ ∼ N (υ, σ2). Integrating 1/µ out of the above conditional
joint PDF by using Lemma 2, we have that

fXi
=

(

λ

2π

)Ni/2

(1 + λωi1σ
2)−1/2

× exp

[

−λωi1υ
2 − 2Niλυ −N2

i λ
2σ2

2(1 + λωi1σ2)
− 1

2
(λωi2 + 3ωi3)

]

.

Taking the logarithm of fXi
and then summing over i yields the desired result.

B Data Used for Example

The following data was used for the illustrative example. Table 1 contains the CWL-to-
failure for each component at each of the 15 different sites. Table 2 contains summarized
data on the CWL recorded over one year for each site. Table 3 contains data on annual
average turbidity as the water quality measure for each site.
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Table 1: CWL-to-failure for each RGF at each site. The number of rows corresponds to
the number of components in each site.

Site 1 2 3 4 5 6 7 8

496 674 632 813 1546 2096 1134 8215
811 637 1215 591 868 1275 1896 4207
652 553 965 605 1077 3943 860 1967
585 748 1034 1115 1589 1348 1425
512 764 813 738 1469
478 561 865 784 1137
521 451 1120 714 1093
411 497 1017 641 1262
604 543 1113 580 810
482 505 1160 1145 1011
417 518 1040 501 942
768 591 932 863
533 285 835
426 436
674 546
672 476
664 588
729 432
657 623
539 397
795 541
673

Site 9 10 11 12 13 14 15

11991 1473 10268 1639 1219 1004 9066
5674 897
5339

Table 2: CWL for each site over a one year period.

Site 1 2 3 4 5

Mean monthly CWL 134.75 68.42 136.83 121.42 5.83
Annual CWL 1617 821 1642 257 430

Site 6 7 8 9 10

Mean monthly CWL 36.83 28.83 64 39.83 37.83
Annual CWL 442 346 768 478 454

Site 11 12 13 14 15

Mean monthly CWL 35.42 13.08 20.75 18.33 18.25
Annual CWL 425 157 249 220 219
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Table 3: Average turbidity data for each site.

Site 1 2 3 4 5 6 7 8

Turbidity 1.4 1.53 1.04 1.2 0.9 0.6 0.7 0.4

Site 9 10 11 12 13 14 15

Turbidity 0.3 0.8 0.2 0.9 0.8 0.7 0.3
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