Metal-Organic frameworks (MOFs) are crystalline porous materials. Coordination bonds between transition metal cations and organic ligands. Applications in gas separation, sensing devices, and drug delivery.

Experimental
- Copper benzene-1,3,5-tricarboxylate (CuBTC) MOF was synthesized using manual LbL method at room temperature.
- Gold (Au 200nm) substrate was immersed in a solution of 16-Mercaptoundecanoic acid (16-MIDA) and ethanol for 1 hour to generate the self-assembled monolayer (SAM) with –COOH functionality.
- Layer-by-Layer method:
 - Immersion in copper acetate solution
 - Immersion in trimesic acid solution
 - Rinsing (ethanol) and drying (N₂) steps between each immersion
 - The cycle was repeated 40 times at ambient temperature

Molecular modelling
- Grand Canonical Monte Carlo used to obtain adsorption isotherms
- Allows comparison with experimental data

Results
- GCMC simulations
 - No partial atomic charges used
 - Various partial atomic charges used for comparison
 - Different isotherm shape for different charge sets
 - CHELPG® partial atomic charges used
 - Type III isotherm

Conclusions
- CuBTC was synthesized using manual LbL method
- GCMC simulations indicate that partial atomic charges obtained by different methods have varying effects on different MOFs

Future work
- The experimental method will be adjusted in order to investigate the effect of factors including temperature, concentration, immersion time etc. on crystal formation and properties
- In order to establish a systematic procedure to evaluate the effect of atomic partial charges on adsorption isotherms, GCMC simulations of CuBTC and water with different sets of partial charges

Acknowledgements
We would like to thank the EPSRC for the financial support of this project.