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Abstract  
The ‘mathematics problem’ is a well-known source of difficulty for students attempting numerical problem solving 
questions in the context of science education. This paper illuminates this problem from a biology education perspective 
by invoking Hogan’s numeracy framework. In doing so, this study has revealed that the contextualisation of 
mathematics within the domain of biology is not the main source of difficulty for students but rather more 
fundamental mathematical skills. 
 
Keywords: Numeracy, Problem Solving, Biology Education, Mathematical Deficiency, The Mathematics 
Problem. 

 
 
Numerical Problem Solving in Biology Education 
 
Problem Solving 
Problem solving is a fundamental skill that is necessary to effect learning from the level of novice to 
that of expert and to allow an expert to operate effectively at an advanced level (American 
Association for the Advancement of Science, 2011; National Academy of Science, 2011). Problem 
solving is defined as the application of basic operations in order to move the initial state of a system 
to its goal state (Newell & Simon, 1972; Dunbar, 1998). This definition is very broad but this reflects 
the expansive nature of the literature on problem solving. However, two key features of problem 
solving can be identified as being significant to the research presented in this paper pertaining to 
numerical problem solving questions: level appropriateness; and, novelty. 
 
In order to appropriately categorise a question as a “problem” it cannot be examined in isolation from 
its intended audience. It is a requirement that the question be developmentally appropriate for the 
students who are to undertake it before it can be considered a problem solving question (Lesh & 
Zawojewski, 2007; Piaget & Inhelder, 1975). For example, some students will progress through their 
Biology education at a different rate to their mathematical education, therefore at different points 
during this progression, their mathematical fluency will differ. A numerical biology question might 
thus be routine for a student late in their education whilst a student at an earlier stage in their 
education may find the very same question much more problematic. Thus it is possible for a question 
to be both a “problem” and a routine exercise, simultaneously. 
 
Familiarity with a question influences its categorisation as a problem i.e. once the solution is known 
the question is no longer a problem. The necessity for novelty in describing a question as a problem 
was first discussed by Köhler in 1925 (Köhler, 1925) and many researchers have further emphasised 
this since (Polya, 1945 & 1962; Schoenfeld, 1985; National Council of Teachers of Mathematics, 2000). 
Unfamiliar questions require a student to use higher order thinking skills to reason and provide a 
solution. It is the necessity of these skills that renders any automatic operation ineligible for problem 
solving status (Lester & Kehle, 2003; Resnick & Ford, 1981). In other words, if a question can be solved 
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by an algorithm alone, without the application of higher order thinking skills, then it does not 
constitute a problem solving question but merely a routine exercise. 
 
Numerical Proficiency in Science 
Basic mathematical principals are an absolute necessity if one is to understand any scientific 
phenomena. However, it is widely recognised that High school students’ lack a basic understanding 
of mathematical concepts and hence this negatively impacts their understanding of science. This 
observation has been the focus of much media attention (Royal Society of Chemistry, 2009a, 2012a-b) 
and has been under scrutiny from government advising bodies: a recent report from SCORE (Science 
Community Representing Education, 2010), a group of science regulatory bodies, has expressed 
concern that a significant proportion of the mathematical requirements of high school science courses 
are not assessed. Several initiatives by members of SCORE have been created as a consequence of this 
which are aimed at identifying and improving mathematical inadequacies (Royal Society of 
Chemistry, 2009b-c). The numerical problem solving inadequacies of students, and their impact, has 
been commented on within science education research for some time. The literature pertaining to 
physics and chemistry education research is well documented; however, that of biology education 
research is limited by comparison.  
 
Most literature commentary relating to a lack of student mathematical proficiency within the field of 
biology education has been over the past 15 years (Gross, 2000; Bialek and Botstein, 2004). Gross 
(2000) asserted that mathematics and biology courses are often taught almost independently of each 
other at university level, even when obvious crossovers did exist. Gross suggests that this lack of 
contextualisation renders students with isolated knowledge constructs and hence students find it 
difficult to effectively transfer knowledge from one course to the other. Similarly, Hourighan and 
O’Donoghoue (2006) discovered that students enter mathematically demanding university level 
biology courses with a distinct lack of the requisite mathematical skills needed to effectively engage 
with the course. They too asserted that mathematics is taught in isolation to biology leaving students 
with no opportunity to explore the mathematical ideas in context and that this promoted a ‘learned 
helplessness’ within the student body. Bialek and Botstein (2004) argued that the biological sciences 
are now too complex to begin studying the interdisciplinary facets at a late stage and suggest that an 
integrated approach is required early on in education. Some specific negative outcomes of these 
disconnected learning approaches have also been investigated. A university level study by O’Shea 
(2003) found that Irish students significantly underperformed on non-routine mathematical tasks 
contextualised within biology questions. Similarly, Australian nursing students demonstrated basic 
mathematical errors during the calculation of drug concentrations (Eastwood et al., 2011). Moreover, 
a decade-long survey of plant physiology students, by Llamas et al. (2012), revealed persistent 
weaknesses in their abilities to answer quantitative questions. 
 
Mathematics in Context 
 
The literature pertaining to the use of mathematics in different contexts largely follows one of two 
lines of argument, either transfer of learning or situated cognition. The transfer of learning argument 
investigates the idea of knowledge gained in one context being transferrable to another context 
(Evans, 1999) and is the foundation on which education is built (Perkins, 1992). This idea of transfer is 
central to science education as the mathematical knowledge that students develop in the mathematics 
classroom is expected to be available for use in the science classroom (Schoenfeld, 1994). For 
knowledge to be transferred to a new context it must first be developed in the original context. For 
example, if students do not learn any mathematics in the mathematics classroom they will be unable 
to use mathematical knowledge in the science classroom. In a chemistry setting, Hoban, Finlayson 
and Nolan (2013) have suggested that many student difficulties arise due to insufficient mathematical 
understanding rather than an inability to transfer the knowledge. Transfer of knowledge has also 
been said to be improved if the instruction is well-designed in the primary context (Perkins and 
Salomon, 1988) yet some researchers are of the opinion that the transfer of learning is not necessarily 
as linear as it may seem. Boaler (1993) asserts that the context that knowledge is to be transferred into 
can significantly affect students’ performance and that this phenomenon is underestimated; the 
alternative argument, situated cognition (Lave and Wenger, 1991) places more emphasis on this. 
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It has been said that understanding and the context in which it occurs cannot be separated (Lave, 
1988). Thus, the biological context in which one finds many mathematical concepts embedded 
requires a significant degree of attention since it is distinct from the mathematical context in which it 
was first learned. Brown, Collins and Duguid (1989) exemplify this when they assert that equation 
manipulation and use of algorithms, fundamental mathematical concepts, are not necessarily well 
used by students in novel contexts despite being confident in their use in a mathematics classroom. 
Furthermore, they argue that the abstract concept and the context in which it is learned are linked and 
thus one cannot expect efficient transfer to new contexts. The central theme in situated cognition is 
therefore to develop skills within the context they are to be used. 
 
These two theories do not have to act in opposition and an alternative framework may assist to aid in 
the understanding of the use of mathematics in science education. This study will use Hogan’s 
numeracy framework to further illuminate the ‘mathematics problem’. 
 
Hogans’ Numeracy Framework  
 
Hogan (2000) asserts that for one to be numerate in a particular situation one needs three types of 
knowledge: mathematical, contextual and strategic. Mathematical knowledge is defined as “the skills, 
techniques and concepts necessary to solve quantitative problems encountered in a real context” 
(Thornton & Hogan, 2004a). These skills, techniques and contexts are first encountered by a 
secondary school student in the mathematics classroom. Students must first have familiarity with 
these mathematical concepts before they are able to use them in other domains such as the various 
mathematical areas of science. Without the prerequisite mathematical knowledge, a student will be 
unable to indentify the mathematics in a particular situation or use appropriate mathematical skills 
(Seirpinska, 1995). 
 
Mathematical knowledge alone is not sufficient for one to be numerate as an understanding of the 
context in which the mathematics resides is crucial too (Hogan, 2000). A student with a 
comprehensive mathematical knowledge, will still encounter difficulties in solving a problem if they 
do not possess an understanding of what is being asked of them. At a basic level, contextual 
knowledge is an understanding of the language and terms used in a problem but at a more advanced 
level it is being able to understand the significance, meaning and perhaps inferences that the problem 
presents (Thornton & Hogan, 2004b). 
 
Possession of strategic knowledge is also key to being numerate. This is the ability to select and 
employ mathematical knowledge once the context of the problem has been understood (Perso, 2006; 
Hogan, 2000). In this regard, strategic knowledge serves to bring together both mathematical 
knowledge and contextual knowledge to give rise to a numerate individual. Checking that a solution 
makes sense is also part of strategic knowledge. Taken as a whole, Hogan’s (2000) strategic 
knowledge is closely linked with metacognition. 
 
The Purpose of This Study 
 
This study aims to investigate the difficulties that students display when answering numerical 
problem solving questions in high school level biology. The numerical problem solving questions that 
are under investigation are those commonly encountered by candidates sitting the National 5 and 
Higher biology courses of the Scottish education system. The level of mathematical skill required in 
these questions is far lower than the level of biology that might be required to understand the context. 
Moreover, although the questions are contextualised within a biology setting, they often do not 
require any understanding of biology to answer – they are in essence mathematical questions 
covering such concepts as averages, percentage increase or decrease, ratios and data interpretation. 
These mathematical skills are covered far earlier in the students’ education, generally in primary 
school (about 4 years earlier), and these students are expected to be able to have understanding of far 
more difficult mathematical concepts; the same levels of mathematics in the Scottish curriculum cover 
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such topics as trigonometry, vectors and calculus. It is thus important to investigate the origin of the 
difficulties that students encounter.  
 
Research Questions 
 
This study will use an empirical design to investigate numerical problem solving questions in high 
school level biology. Two research questions have been identified: 
 
(1) Is there evidence of student difficulties in answering numerical problem solving questions in 
biology? 
(2) What does an examination of students’ performance on numerical problem solving questions 
in biology, as analysed using Hogan’s framework of numeracy, reveal about the nature of student 
difficulties? 
 
Research Methodology 
 
Situational and Structural Analysis 
In order to design an activity to explore students’ understanding of numerical problem solving 
questions it was first necessary to conduct a review of the types of question encountered by students 
following both the Scottish National 5 and Higher biology courses. This situational and structural 
analysis of the problem domain was carried out as per Scott (2015) in which situational refers to the 
identification of biology contexts where numerical problem solving skills are used and structural 
refers to the examination of the specific numerical skills that are required to solve such problems. 
Both of these stages involved discourse with multiple, practising high school biology teachers. This 
analysis identified five distinct question types and these are listed in table 1 along with an example of 
each. A similar situational and structural analysis has been carried out previously by the author on a 
slightly smaller problem domain, that of only the Higher biology course (Scott, 2015). This previous 
analysis similarly identified ‘percentage’, ‘ratio’, ‘percentage increase or decrease’ and ‘proportion’ as 
question types; however, the ‘average’ question type was not found in the previous analysis. Since the 
test instrument that was to be designed using the situational and structural analysis was to be 
delivered to students following both the National 5 and Higher courses, it was decided to only use 
question types of the lower level course. Thus the ‘proportion’ question type will not be considered 
further in this study. 
 
Each of these questions first involves extracting the relevant numerical details from either a graph or 
table before the appropriate mathematical skills can be used to solve the question. 
 

Table 1. Question types and examples. 
Question 
Type 

Example 

Average  Six pitfall traps were set in a woodland to sample the invertebrates living there. 
The results are shown in the table below. 

 
Calculate the average number of spiders found per trap. 

Percentage  The table shows the masses of various substances in the glomerular filtrate and in 
the urine over a period of 24 hours. 
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What percentage of the total mass of substances found in the urine is potassium? 

Ratio  Leaf rust is a fungus which grows when its spores land on leaves. The fungus 
spreads over leaf surfaces causing damage. Single leaves from four different 

species of cottonwood tree were sprayed with identical volumes of a suspension 
of rust fungus spores. After 3 days the percentage of leaf area with fungal growth 

was measured. The tannin content in these leaves was also measured. 

  
Express as the simplest whole number ratio, the tannin content in the leaves of the 

eastern cottonwood, narrow‐leafed cottonwood and swamp cottonwood. 
Percentage 
Increase or 
decrease 

The graph below shows the body mass of a human male from birth until 22 years 
of age. 

   
Calculate the percentage increase in body mass in the last 8 years of the study. 

Proportion  The graph below shows how the concentration of insulin in the blood varies with 
the concentration of glucose in the blood. 

  
What total mass of glucose would be present at an insulin concentration of 10 
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units/cm3, in an individual with 5 litres of blood? 
 
During the situational analysis of the four types of numerical problem solving questions it became 
apparent that the use of the term ‘problem’ in the context of these questions required some attention. 
The more experienced scientist may see these questions as nothing more than simple mathematical 
‘exercises’ yet it is thought that a number of factors contribute to their classification as ‘problems’ 
within this context. Since the mathematics has been contextualised within a biology setting these 
questions are somewhat unfamiliar and more than routine mathematics exercises. Furthermore, 
although these questions are part of the Scottish biology curriculum, many biology teachers view 
these as questions as being of the problem solving type, and refer to them as such, so often do not 
‘teach’ them like they would the rest of the curriculum. Biology teachers thus rely on their students’ 
prior understanding of mathematics to solve these questions themselves. These factors indicate that 
the lack of familiarity students have with these questions in a biology setting contributes to their 
categorisation from ‘exercises’ to ‘problems’. The author acknowledges that the classification of these 
questions as ‘problems’ or ‘exercises’ may be a debatable one. 
 
The question types identified through the situational and structural analysis were then used to design 
the test instrument, details of which are described in the next section. 
 
Test Instrument Design and Implementation 
 
A test instrument design was required that would elucidate a number of pieces of information. First, 
the four different question types, average, percentage, ratio and percentage increase, needed to be 
incorporated. Second, the effect of the biological context of these numerical problem solving questions 
wished to be explored and this required two series of analogues questions each covering all four 
question types: one series of biology questions; and, one series of mathematical questions that are 
identical to the biology question series but with no biological context. The situational and structural 
analysis also revealed that the biology questions expected of Scottish high school students can involve 
either the extraction of information from a table or a graph. It was thought that this may be an 
important aspect to explore and to achieve this a third series of questions was necessary. 
 
The test instrument thus contained three series of questions: mathematics; biology (table); and, 
biology (graph). The mathematics and biology (table) question series each involved extracting 
information from a table and hence comparison of these could reveal information about the effect of 
the biological context. The biology (graph) question series involved extracting information from a 
graph and so could be compared to the biology (table) question series to yield information on the 
differences between questions involving graphs and tables. Each of the three series contained the four 
question types. The test instrument can be found in the supplementary information. 
 
Study Setting and Participants 
 
This study was carried out in a high school in Scotland during the run up to the national exams thus 
none of the content of the test instrument would be considered new material to the participating 
students. Three Higher Biology classes participated in this study each composed of mainly 5th year 
students, age 16/17, and a very small proportion of 6th year students, age 17/18 to give a total of 48 
students that participated from this level. Additionally, four National 5 biology classes participated 
each composed of 4th year students, age 15/16, to give a total of 71 students that participated from 
this level. The classes were of mixed ability, sex and had different teachers.  
 
Permission was obtained from the head teacher of the school before this research was carried out. 
Pupils were required to sign a research consent form to allow the data generated to be analysed; 
however, every pupil in the classes participated in the activity. 
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Data Analysis 
 
Analysis of Overall Performance 
Students’ responses to the test instrument were scored in a binary fashion as either correct or 
incorrect. This generated a correct answer rate for each question type. The different question types 
also made two series of four matched pairs, one comparing biology (table) and mathematics (table) 
questions and the other comparing the biology (table) and biology (graph) questions; as such, a 
McNemar test was employed.  
 
Error Analysis 
The analysis involved the deductive coding of the student’ s erroneous answers using Hogan’s (2000) 
framework which produced the three codes of mathematical, contextual and strategic knowledge. 
Coding of the data was conducted with the help of an experienced biology educator with codes 
continually checked to ensure consistency of meaning. Once coded, the percentages of erroneous 
answers appearing in each category, and for each question type, was calculated. 
 
Results and Discussion 
 
Examination of Students Overall Performance 
The National 5 students’ performance on the test instrument is summarised in table 2. For the 
mathematics questions, students performed best on the ratio and average question types (79.7%, and 
78.4%, respectively) followed by the percentage question type (56.8%) and finally the percentage 
increase question type (9.5 %). For the biology (table) questions the pattern is similar but with the 
ratio and average question types the other way about: average (78.4%), ratio (75.7%), percentage 
(56.8%) and finally percentage increase (9.5%). The biology (graph) questions have noticeably lower 
scores but follow a similar patter to the mathematics questions: ratio (62.2%) average (52.7%), 
percentage (23.0%) and finally percentage increase (1.4%). Students’ performance in the biology 
(graph) question series was approximately 20% lower than their performance on either the biology 
(table) or mathematics question series (34.8% compared to 53.8% and 56.1%, respectively). 
 
These data would seem to suggest that the average and ratio question types are most easy followed 
by the percentage question type with the percentage increase question type being the most difficult 
by a considerable margin. It is perhaps worth reflecting on the students’ performance on the 
percentage increase questions: the highest correct answer rate was only 9.5% for the mathematics 
question series and the lowest was 1.4% for the biology (graph) question series. 
 

Table 2. National 5 students’ scores on different question types. 
 

Question Type  Mathematics 
% 

Biology (Table) 
% 

Biology (Graph) 
% 

Average  78.4  78.4  52.7 
Ratio  79.7  75.7  62.2 

Percentage  56.8  52.7  23.0 
Percentage 
Increase  9.5  8.2  1.4 

AVERAGE  56.1  53.8  34.8 
 
The Higher students’ performance on the test instrument is summarised in table 3. For the 
mathematics questions, students performed best on the average question type (87.5%) followed by the 
percentage question type (83.3%), the ratio question type (77.1%) and finally the percentage increase 
question type (41.7 %). For this question series, the percentage question type has moved from third to 
second easiest in comparison to the National 5 data previously presented. For the biology (table) 
questions the pattern is again similar to the National 5 data: average (93.8%), ratio (89.6%), percentage 
(77.1%) and finally percentage increase (50.0%). The biology (graph) questions have noticeably lower 
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scores but follow a similar patter to the biology (table) questions: average (70.1%), ratio (62.5%), 
percentage (52.1%) and finally percentage increase (27.1%). Students’ performance in the biology 
(graph) question series was approximately 20% lower than their performance on either the biology 
(table) or mathematics question series (53.0% compared to 77.6% and 72.4%, respectively) which is in 
line with the National 5 data. 
 
Similar to the National 5 data, the Higher data would seem to suggest that the average question type 
is most easy followed by the ratio question type, the percentage question type and the percentage 
increase question type being the most difficult, again by a considerable margin. Although the trend in 
the mathematics question series sees the percentage and ratio question types swapped in difficulty. 
Although not as pronounced as the National 5 data set, the scores for the percentage increase question 
type are worth highlighting in the Higher data set too: the highest correct answer rate was 50% for the 
biology (table) question series and the lowest was 27.1% for the biology (graph) question series. 
 

Table 3. Higher students’ scores on different question types. 

Question Type  Mathematics 
% 

Biology (Table) 
% 

Biology (Graph) 
% 

Average  87.5  93.8  70.1 
Ratio  77.1  89.6  62.5 

Percentage  83.3  77.1  52.1 
Percentage 
Increase  41.7  50.0  27.1 

AVERAGE  72.4  77.6  53.0 
 
The three series of questions were then compared using a McNemar analysis on the pairwise data. 
Both the National 5 and the Higher data display similar results as can be seen in table 4 and table 5. 
The p-values for all the analyses for the mathematics and biology (table) questions are all indicative of 
no statistically significant difference in performance on any of the question types at either level. This 
is in direct contrast to the comparison between the biology (table) and biology (graph) question series 
which indicates that all but the percentage increase question at the National 5 level are statistically 
significant with p-values less than 0.05. The p-value for the percentage increase question at the 
National 5 level is 0.0736 so whilst low is not statistically significant at the 95% confidence level. This 
is likely a consequence of the poor performance in all question series for this question type and a 
concomitantly small sample size for pairwise success. 
 

Table 4. McNemar analysis of National 5 students’ performance between question types. 
  p‐Values 

Question Type  Mathematics and 
Biology (Table) 

Biology (Table) and 
Biology (Graph) 

Average  0.8383  0.0023 
Ratio  0.6464  0.0412 

Percentage  0.6056  0.0001 
Percentage 
Increase  1.0000  0.0736 

 
Table 5. McNemar analysis of Higher students’ performance between question types. 

  p‐Values 

Question Type 
Mathematics and 
Biology (Table) 

Biology (Table) and 
Biology (Graph) 

Average  0.5050  0.0055 
Ratio  0.1814  0.0059 
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Percentage  0.5465  0.0139 
Percentage 
Increase 

0.4227  0.0098 

 
Two important conclusions can be made from these comparisons. First, there is no difference in 
students’ performance between the mathematics and biology (table) question series and thus the 
notion of the biology context being a source of difficulty for the students is not supported by evidence 
in this study. Second, the source of the data to be used in a question makes an important contribution 
to its difficulty: questions involving extraction of data from a graph are more challenging than those 
where the data is to be extracted from a table. 
 
Error Analysis 
Each incorrect response was categorised according to Hogan’s numeracy framework. To illustrate the 
categorisation process a number of the student errors will be examined below. Figure 1 shows a 
student’s attempt at a ratio question type from the biology (table) question series that has been 
categorised as a mathematical error, along with the question. In this answer, the student has success 
fully extracted the information from the table and carried out a summation of values to achieve the 
initial ratio of 14:21. The student appears to have recognised that this ratio requires simplification, as 
suggested in the question, but does not have the mathematical knowledge to effect such a 
simplification. 
 

 

 
Figure 1. A students attempt at Q6b, a ratio question from the biology (table) question series. 

 
Figure 2 shows a student’s attempt at Q6a, an average question type from the biology (table) question 
series that has been categorised as a contextual error (the question can be found in figure 1). Here, the 
student appears to have considered spiders, woodlice and beetles all to be types of spider; the 
numbers they add together in the first line of their working is the sum of all three categories. After 
this error, they successfully carry out the rest of the calculation. 
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Figure 2. A students attempt at an average question from the biology (table) question series. 

 
Figure 3 shows a student’s attempt at Q8a, a percentage increase question type from the biology 
(graph) question series that has been categorised as a strategic error, along with the question. The 
student has successfully extracted the information from the graph and is able to calculate that the new 
value at 8 hours is 300% of the initial value; however, they have failed to interpret the overall question 
correctly and have not calculated the percentage increase.  
 

 
Figure 3. A students attempt at a percentage increase question from the biology (graph) question 

series. 
 
Figure 4 contains a histogram illustrating the overall distribution of the categories across errors at 
National 5 and Higher and the individual results for each questions series and question type are 
shown in table 6. 
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Figure 4. Categorisation of National 5 and Higher student errors according to Hogan’s numeracy 

framework. 
 

Table 6. Categorisation of National 5 and Higher student errors according to Hogan’s numeracy 
framework. 

    Mathematical  Contextual  Strategic 
Question 
Series 

Question Type  National 5  Higher  National 
5 

Higher  National 
5 

Higher 

M
at
he
m
at
ic
s 

Average 
 33%  

(N = 15) 
33%  

(N = 6) 
7% 

(N = 15) 
17%  

(N = 6) 
60%  

(N = 15) 
50%  

(N = 6) 

Ratio 
36%  

(N = 14) 
45%  

(N = 11) 
14% 

(N = 14) 
18%  

(N = 11) 
50%  

(N = 14) 
36% 

(N = 11) 

Percentage  38%  
(N = 21) 

50% 
(N = 8) 

14%  
(N = 21) 

0%  
(N = 8) 

48%  
(N = 21) 

50%  
(N = 8) 

Percentage 
Increase 

31%  
(N = 64) 

26%  
(N = 27) 

5%  
(N = 64) 

7%  
(N = 27) 

64% 
(N = 64) 

67%  
(N = 27) 

Bi
ol
og

y 
(ta

bl
e)
  Average 

40%  
(N = 15) 

33%  
(N = 3) 

7%  
(N = 15) 

0%  
(N = 3) 

 53% 
 (N = 15) 

66%  
(N = 3) 

Ratio  24%  
(N = 17) 

20%  
(N = 5) 

6%  
(N = 17) 

20%  
(N = 5) 

71%  
(N = 17) 

60%  
(N = 5) 

Percentage  29%  
(N = 34) 

27%  
(N = 11) 

6%  
(N = 34) 

0%  
(N = 11) 

35% 
(N = 34) 

73%  
(N = 11) 

Percentage 
Increase 

29% 
 (N = 65) 

29% 
(N = 24) 

6% 
(N = 65) 

8% 
(N = 24) 

65% 
(N = 65) 

63% 
(N = 24) 

Bi
ol
og

y 
(g
ra
ph

)  Average 
38% 

(N = 34) 
36% 

(N = 14) 
21% 

(N = 34) 
14% 

(N = 14) 
41% 

 (N = 34) 
50% 

(N = 14) 

Ratio  30% 
(N = 27) 

29% 
(N = 17) 

11% 
(N = 27) 

12%  
(N = 17) 

59% 
(N = 27) 

59% 
(N = 17) 

Percentage  33% 
(N = 55) 

27% 
(N = 22) 

9% 
(N = 55) 

0%  
(N = 22) 

58% 
(N = 55) 

73% 
(N = 22) 

Percentage 
Increase 

33% 
(N = 70) 

26% 
(N = 34) 

11% 
(N = 70) 

6% 
(N = 34) 

56% 
(N = 70) 

68% 
(N = 34) 

 
The overall distribution of students’ errors across the categories as depicted in figure 4 reveals a 
propensity for students’ errors to be strategic in nature as demonstrated by 56% and 62% of students’ 
errors being categorised as such for National 5 and Higher students, respectively. After strategic 
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issues, students’ errors were next likely to be of the mathematical category with 32% and 30% of 
National 5 and Higher students’ incorrect responses, and finally, students’ errors were classified as 
contextual with 9% and 8%, respectively, for National 5 and Higher students. 
 
A detailed examination of the percentage of each categorisation across each questions series and 
question type (table 6) echoes the overall distribution. This is true for all questions except for the ratio 
question type in the mathematics question series which sees the mathematical category higher than 
the strategic category for the Higher students’ errors and the percentage question type, also in the 
mathematics question series, where the mathematical and strategic categories are equal in magnitude. 
The analysis of these data would suggest that the contextual knowledge of these questions is not the 
main contributor to any difficulties students may have with numerical problem solving questions. 
Mathematical knowledge and strategic knowledge appear to be areas of greater difficulty for students 
in this study. 
 
Conclusions 
 
This study sought to investigate the difficulties students have with numerical problem solving 
questions in high school biology. The first research question asked if there was any evidence of 
student difficulties in answering numerical problem solving questions in biology. The examination of 
students overall performance revealed that National 5 students could be said to have difficulties 
answering percentage and percentage increase questions: only around 50% of these students were 
correct in their answers for the percentage questions and less than 10% were correct for the 
percentage increase questions. The higher students displayed similar difficulties with both the 
percentage and the percentage increase questions being the least well answered. The percentage 
questions were much better answered for the Higher students with the correct answer rate being in 
the region of 75%; however, one could argue that calculating a percentage should be such a simple 
operation for students who are expected to be able to deal with mathematical concepts such as 
calculus and that a score of 75% is still rather low. Again the Higher students’ performance on the 
percentage increase questions was greater than the National 5 students, having reached around 50% 
but still low enough to be identified as a problem area. Considering the National 5 and Higher data as 
a whole, it appears that percentage and percentage increase questions are areas of difficulty for 
students in high school biology. 
 
The comparison of the biology (table) and biology (graph) questions revealed that students have 
much greater difficulty correctly answering the graph questions. This is likely due to the greater 
difficulty students have with extracting the relevant information from a graph, rather than a table, to 
be used in answering the question. This effect, coupled with the previous assertion of students’ 
difficulty in percentage increase questions, is neatly exemplified by the performance in the percentage 
increase question in the biology (table) question series: only 1 out of the 71 students managed to 
answer this question correctly. Graph reading can thus be identified as a problem area for students 
carrying out numerical problem solving questions. 
 
The second research question asked if an examination of students’ performance on numerical 
problem solving questions in biology using Hogan’s framework of numeracy could reveal anything 
about the nature of student difficulties. This analysis has shown that students’ errors can be 
categorised more commonly as a deficiency in mathematical knowledge or strategic knowledge and 
that a lack of contextual knowledge is least likely to be an issue for the majority of students. It has 
been established in the literature that the transfer of mathematical knowledge to the sciences is 
difficult for students; however, this is most often attributed to the difficulties students have in using 
the mathematics in the unfamiliar context (Boaler, 1993). The findings in this study suggest that the 
biology context of the numerical problem solving questions is not the main source of difficulty but 
mathematical knowledge and strategic knowledge, the other aspects of numeracy, are the main 
problems; these are both concepts that are primarily learned in the mathematics classroom. This is an 
important finding as it serves to indicate students’ lack of mathematical preparation prior to entering 
the biology classroom. So whilst biology educators are likely in the best place to teach biology 
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numeracy, due to the contextual requirement, it appears they are hindered by students’ under 
developed mathematical and strategic knowledge from the mathematics classroom. 
 
Overall, the major findings of this study can be summarised as follows: 
 
(1) Students have most difficulty with percentage questions and percentage increase questions. 
(2) Students find it more difficult to extract information from graphs than tables. 
(3) The biological context of these questions is not the main source of difficulty: both a lack of 
mathematical and strategic knowledge are greater sources of difficulty. 
 
Limitations of this Study 
 
The cohort of students who participated in this study were drawn from only one school and as a 
result of this there may be a bias in the conclusions drawn from this study. The school which 
participated in this study usually performs well above average in national examinations and so one 
could speculate that the errors and issues identified here are a subset of those that exist in general and 
that there are others not identified here; however, it is likely that the errors identified here are present 
more generally and are thus a useful finding. As a consequence of the study taking place in only one 
school, the sample size was small, although statistically significant results were obtained. Despite 
these limitations, the findings of this study are still thought to represent a valuable contribution to the 
limited literature on the subject of mathematics in science education. 
 
Implications for the Teaching of Biology 
 
The research has highlighted a number of specific areas relating to numerical problem solving 
questions in high school biology that cause difficulties for students. With these identified it is hoped 
that biology educators can utilise this information when teaching relevant areas of high school 
biology courses. With mathematical knowledge and strategic knowledge being identified as the major 
contributors to students’ difficulties it is thought that these issues may well have developed in the 
mathematics classroom and thus greater emphasis should be placed on learning these during 
students’ mathematical education. However, this does not ameliorate the present problem and thus 
mathematics educators and biology educators should work together to develop a solution. 
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