Understanding and mitigating the consequences of undesired crystallisation taking place during washing of active pharmaceuticals

Muhid Shahid 1,2, Georgia Sanxaridou 1,2, Sara Ottoboni 1,2, Leo Lue 2, Chris Price 1,2

* email: muhid.shahid@strath.ac.uk

Introduction

Important to maintain physico-chemical crystal properties throughout isolation

- Crystallisation
- Filtration
- Washing
- Drying
- Secondary processing

Washing plays a key role in isolation:
- To remove unwanted crystallisation solvent & impurities
- Crystallisation continues whenever there is super-saturation and particles

Project Aim & Objective

A wash solvent guide is designed to look at various important factors while selecting a wash solvent:

- Efficient removal of mother liquor and prevent cake desaturation
- Assist during drying
- Requirements for good wash solvent
- Remove impurities without dissolving API
- Wash solvent viscosity-density
- API recovery (washing yield)
- No crystal morphology change
- No anti-solvent effect - Avoid API specific impurities nucleating during washing

This project looks at developing a screening methodology to quantitatively analyse the propensity for precipitation of API and its impurities during the washing process.

Materials & Method

- This analysis is conducted on paracetamol crystallised from three different crystallisation solvents; ethanol, isopropanol and isooamyl alcohol
- Three wash solvents are evaluated; heptane, acetanilide and isopropyl acetate
- Saturated solution is prepared using paracetamol and two related impurities (at 2mol%: metacetamol & acetalitriol
- For wash solution, different ratios of crystallisation and wash solvents are used: 90-10, 75-25, 50-50, 40-60, 30-70, 20-80, 10-90, 100% wash solvent (% by volumes)

Anti-solvent screening procedure:

1. Centrifuge tube & filter weighing
2. Addition of saturated crystallisation solution in centrifuge filter
3. Addition of wash solution in centrifuge filter
4. Mixing of solution present in the filter using a vortex shaker for 1 minute
5. Centrifugation for separation of solid and liquid phase
6. Weighing of centrifuge filter and tube at the end. Collection of liquid phase in glass vial 2
7. HPLC analysis performed on both the solid precipitate and final liquid filtrate
8. Solubility of paracetamol was also measured in binary solvent mixtures of crystallisation and wash solvent at 22°C using gravimetric analysis

Results

- Anti-solvent effect observed from previous 1ml glass vial procedure (where 300µL of saturated solution and 700 µL of wash solution is used):

<table>
<thead>
<tr>
<th>Wash Solvents</th>
<th>Heptane</th>
<th>Acetanilide</th>
<th>Isopropyl acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>40-60%</td>
<td>No nucleation</td>
<td>10-90% (w/w)</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>40-60%</td>
<td>No nucleation</td>
<td>0-100% (w/w)</td>
</tr>
<tr>
<td>Isooamyl alcohol</td>
<td>20-80%</td>
<td>No nucleation</td>
<td>No nucleation</td>
</tr>
</tbody>
</table>

- Anti-solvent effect observed from centrifuge filter vial method (where 120 µL of saturated solution and 280 µL of wash solution is used):

<table>
<thead>
<tr>
<th>Wash Solvents</th>
<th>Heptane</th>
<th>Acetanilide</th>
<th>Isopropyl acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>30-70%</td>
<td>No nucleation</td>
<td>No nucleation</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>30-70%</td>
<td>No nucleation</td>
<td>No nucleation</td>
</tr>
<tr>
<td>Isooamyl alcohol</td>
<td>10-90%</td>
<td>No nucleation</td>
<td>No nucleation</td>
</tr>
</tbody>
</table>

Delayed precipitation of solutes observed using the centrifuge vial method is due to the kinetics of nucleation (mixing and scale of the experiment?).

- Two distinct examples:

 - **Ethanol – Acetanilide**: no anti-solvent effect was observed

 - **Ethanol – Heptane**: anti-solvent effect was observed

Conclusion & Future Work

- Poorly designed washing process can result in uncontrolled crystallisation of both API and impurities, affecting final product quality
- Binary solvent mixture's solubility data (crystallisation & wash solvent) assist in developing washing strategy that prevents product dissolution & agglomeration
- Ethanol – Heptane system, washing should be carried out in steps (first wash: 40:60 ratio (cryst : wash solvent) of wash solution; final wash: pure heptane)
- In future, this work on mapped wash solvent composition boundaries will be used to explore the role of uncontrolled washing on product purity and agglomeration

1. EPSRC Centre for Future Manufacturing in Continuous Manufacturing and Crystallisation, University of Strathclyde, Glasgow G1 1RD, UK
2. Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1RD, UK