Evaluation of Wind Power Forecasts – An up-to-date view

Jakob W. Messner
DTU
Pierre Pinson
DTU
Jethro Browell
University of Strathclyde
Mathias B. Bjerregård
DTU
Irene Schicker
ZAMG

Abstract

Wind power forecast evaluation is of key importance for forecast provider selection, forecast quality control and model development. While forecasts are most often evaluated based on squared or absolute errors, these error measures do not always adequately reflect the loss functions and true expectations of the forecast user, neither do they provide enough information for the desired evaluation task. Over the last decade, research in forecast verification has intensified and a number of verification frameworks and diagnostic tools have been proposed. However, the corresponding literature is generally very technical and most often dedicated to forecast model developers. This can make forecast users struggle to select the most appropriate verification tools for their application while not fully appraising subtleties related to their application and interpretation. This paper revisits the most common verification tools from a forecast user perspective and discusses their suitability for different application examples as well as evaluation setup design and significance of evaluation results.

Keywords: Wind power, forecast evaluation, evaluation metrics, testing forecast performance.

1. Introduction

Wind power has become an important power source in many power systems. In Europe it already covers approx. 12% of the total electricity demand (WindEurope 2018). However, variability and limited predictability of its production challenges power systems and markets, making forecasts required for optimal operation (e.g. load balancing and maintenance) and trading. A lot of research has been carried out in the development of wind power forecasting models and a variety of models have been proposed for different applications and types of forecasts. These include deterministic point predictions, probabilistic forecasts of various forms, multivariate predictions or predictions for specific events such as ramps or gusts (Sheridan 2018). See e.g., Giebel et al. (2011) for a general state-of-the-art report on wind power forecasting or Kariniotakis (2017) for a recent coverage of challenges related to wind power forecasting (and extension to other renewable energy sources).

One of the current challenges, which is rarely covered and discussed, is forecast verification, maybe since many believe that verification frameworks are well-established and forecast users
are content with their use. Forecast evaluation is crucial for model development, selection of the best forecast provider, or for quality control. Some of its main goals include estimation of future error statistics, comparison of the forecast accuracy of different forecasts, or finding flaws in a certain forecast model. Unfortunately, it is not the case that current knowledge in forecast verification and existing verification frameworks can give us the whole information about objective quality of forecasts and their value to forecast users. The original view on forecast quality and value (inspired by meteorological applications) was laid out in the 1980s by Murphy and Winkler (1987); Murphy (1993). More recently, this aspect was discussed by Landberg et al. (2007) or Bessa et al. (2010) for the specific case of wind power forecasting.

Evaluation metrics are tools to summarize the characteristics of forecast errors but unfortunately there is no universal metric that can examine all forecast qualities. The best forecast in one metric can perform poorly with respect to another metric. Therefore, it is essential to select an evaluation criterion that well reflects the cost function of the forecast user. E.g., if the cost of an error is directly proportional to the error, the mean absolute error is most appropriate. Selecting an inappropriate evaluation criterion can lead to wrong conclusions such as the selection of a forecast provider that is not the best for the intended application (Möhrlen et al. 2019).

Just like the forecasts themselves, also forecast evaluation exhibits some degree of uncertainty and evaluation results do not always have to reflect future expectations. E.g., there might be performance differences between different years or if forecasts are evaluated only for the summer season the results do not have to be representative for the winter season. Therefore, it is important to design the evaluation setup appropriately and to be able to quantify and correctly interpret these uncertainties of the results.

In contrast to forecast model development, forecast evaluation has not received as much attention in wind power forecasting literature. Notable exceptions are Madsen et al. (2005), which proposes a standard protocol for forecast evaluation, Landberg et al. (2007), which examines the evaluation of ensemble forecasts Bessa et al. (2010), which discusses the relationship between forecast quality and value, or Pinson and Girard (2012), which discusses evaluation approaches for wind power scenario forecasts. Nevertheless, performance evaluation has been an important tool in model development and nearly all publications ought to rely on some form of verification framework to benchmark their own approach. Beyond wind power only, one may find a number of reference works on forecast evaluation in the general forecasting literature. Examples include Jolliffe and Stephenson (2012), Murphy et al. (1985), Gneiting (2011), Richardson (2012), Roulston and Smith (2002), Thorarinsdottir and Schuhen (2018), Wilks (2001), or Katz and Murphy (1997).

Traditionally, discussions of forecast evaluation techniques have mainly been considered by forecast model developers and therefore proposed evaluation approaches are often presented in a technical way and focused on specific problems. In this study we want to review the evaluation from the perspective of a forecast user, revisit some of the most important evaluation metrics for wind power forecasting and discuss their usability for different applications. Furthermore, the evaluation setup and the interpretation of evaluation results is discussed. Thus, this document intents to become a reference for forecast users when setting up a forecast evaluation procedure. It does not suggest specific procedures or metrics but rather critically examines the advantages and disadvantages of different approaches so that it enables forecast users to tailor solutions for their own specific application. As such it complements part 3 of the International Energy Agency (IEA) Recommended Practice on Forecast Solution Selection.
The remainder of this document is structured as follows. First, Section 2 demonstrates on a simple example forecast the importance of selecting a metric that fits to the forecast product, the difference between quality and value, and pitfalls when interpreting results from an inappropriate evaluation setup. Section 3 summarizes some of the most important evaluation metrics for different kinds of forecasts, including point forecasts, probabilistic forecasts of binary, multi-categorical, or continuous variables, and multivariate scenarios. Section 4 discusses approaches to set-up evaluation tasks and interpret their results. Finally, a conclusion can be found in Section 5.

2. Pragmatic context

In this section, we want to point out typical pitfalls of evaluation procedures on simple forecast example data. For this purpose we employ the openly available data set of the GEFCom 2014 wind power forecasting competition (Hong et al. 2016). This data set consists of approximately 2 years of hourly power measurements and corresponding 25–48 hours numerical weather forecasts. Two fairly simple examples are considered in the following to illustrate the importance of loss functions, forecast verification framework, and the link between quality and value of forecasts.

2.1. A forecast benchmarking example

We first transform the 100 meter wind speed predictions into power generation forecasts using a simple local linear regression model (see e.g. (Pinson et al. 2008)). If we denote the wind power measurement at time \(t, t = 1, \ldots, N \) as \(y_t \) and the corresponding day ahead wind speed predictions as \(\hat{u}_t \), this model can be described by

\[
y_t = \alpha_{i,0} + \alpha_{i,1}(\hat{u}_t - u_i) + \epsilon_t
\]

where \(u_i, i = 1, \ldots, P \) are a number of fitting points, \(\epsilon_t \) the forecast error, and \(\alpha_i = (\alpha_{i,1}, \alpha_{i,2}), i = 1, \ldots, P \) are regression coefficients that are different for all \(P \) fitting points. Thus, separate regression equations are fitted for each fitting point, which are combined depending on the distance between the respective fitting points and the actual value of \(\hat{u}_t \). A common choice for fitting points can e.g., be one point for each m/s. These coefficients are estimated so as to minimize the weighted sum of a loss function \(\rho() \) over the training data set

\[
\hat{\alpha}_i = \arg\min_{\alpha_i} \sum_{t=1}^{N} w_t \rho(y_t - \alpha_{i,0} - \alpha_{i,1}(\hat{u}_t - u_i))
\]

where the loss function \(\rho \) commonly is the squared (quadratic) loss but can be any loss function that ideally should reflect the intended application of the forecast. Clearly, therefore, if the end-user’s preferred evaluation measure is suitable to be used directly as \(\rho() \) then it should be, but this is not always possible.

The weights \(w_t \) are defined by a Kernel function,

\[
w_t = K\left(\frac{|\hat{u}_t - u_i|}{h}\right)
\]
where h is the bandwidth parameter controlling the smoothness of the fit and K can, e.g., be the tricube function

$$K(v) = \begin{cases} (1 - v^3)^3 & v \in [0, 1] \\ 0 & v > 1 \end{cases}$$ \hspace{1cm} (4)$$

We fit three different models of this kind with three different loss functions:

- **quadratic loss** $\rho(\epsilon) = \epsilon^2$,
- **absolute loss** $\rho(\epsilon) = |\epsilon|$
- **0.3 quantile loss** $\rho(\epsilon) = \epsilon (0.3 - \mathbb{1}(\epsilon < 0))$

Figure 1 shows these loss functions. Compared to the absolute and quantile loss, the quadratic loss strongly penalizes larger errors and compared to the other loss functions the quantile loss is not symmetric and penalizes negative errors more than positive ones. Figure 2 shows example forecasts for a specific date. The absolute and quadratic error models provide rather similar forecasts with the absolute loss model predicting slightly lower power generation on average. The forecasts of the quantile loss model are even lower, which leads to less negative errors that are weighted higher than positive errors.

These three models are fit on the first 10000 entries of the GEFCom2014 data set and are used to generate forecasts for the remaining 6789 entries. These forecasts are evaluated using 3 different evaluation metrics which are the mean over the test data set of the 3 loss functions listed above: the mean squared error (MSE), the mean absolute error (MAE) and the quantile score (QS) – to be introduced and thoroughly discussed in Section 3. Table 1 summarizes these evaluation results.
Figure 2: Example 24 hour forecast from different forecast models for 2013-11-30.

<table>
<thead>
<tr>
<th></th>
<th>MSE</th>
<th>MAE</th>
<th>QS</th>
</tr>
</thead>
<tbody>
<tr>
<td>quadratic</td>
<td>3.43</td>
<td>14.17</td>
<td>7.11</td>
</tr>
<tr>
<td>absolute</td>
<td>3.46</td>
<td>13.54</td>
<td>6.69</td>
</tr>
<tr>
<td>quantile</td>
<td>4.63</td>
<td>15.29</td>
<td>6.66</td>
</tr>
</tbody>
</table>

Table 1: Different evaluation measures for the three local linear models with quadratic, absolute and quantile loss function. All scores are in their normalized version, hence expressed in percentage of nominal capacity. The best model for each score is highlighted in bold.

Thinking about how models were fitted and based on the intuitive match between loss functions for model fitting and verification, it is not surprising that each model performs best in the metric that was used in the model fitting. Nevertheless, these results show three important aspects of forecast evaluation:

1. the ranking of forecasts clearly depends on the chosen metric and based on a single metric it is not possible to define a forecast that is best for all possible applications

2. to achieve the best possible results it is important for forecast providers to know the actual loss function

3. it is important for the forecast users to know their loss function of forecast errors. First, the forecast providers can only then optimize their models to this loss function and when evaluating different providers, a wrong metric could lead to choosing not the most suitable one for a specific application.
In the above example, the forecast performance is measured on a rather big data set (i.e., a test dataset with 6789 forecast-observation pairs). However, often not as many data are available and performance has to be measured on smaller data sets. Table 2 shows the same performance measures as Table 1 but only using the first 200 time steps of the test data set. Since forecasts are updated hourly, 200 time steps translates to approximately 8 days. However, if forecasts were updated daily or twice daily, this would translate to period of 6 months and 3 months, respectively.

Table 2: Same as Table 1 but only derived from the first 200 time steps of the test data set

<table>
<thead>
<tr>
<th></th>
<th>MSE</th>
<th>MAE</th>
<th>QS</th>
</tr>
</thead>
<tbody>
<tr>
<td>quadratic</td>
<td>3.23</td>
<td>13.06</td>
<td>6.19</td>
</tr>
<tr>
<td>absolute</td>
<td>3.68</td>
<td>13.97</td>
<td>6.43</td>
</tr>
<tr>
<td>quantile</td>
<td>4.55</td>
<td>15.97</td>
<td>6.67</td>
</tr>
</tbody>
</table>

It can be seen that this clearly changes the ranking of the different models so that the quadratic loss function ranks best in all metrics even though we know from construction that the absolute and quantile loss function models should be preferred respectively. The problem here is that a data set length of 200 is not sufficient to draw final conclusions based on score differences, especially for a highly temporally correlated data set such as the one used here, which is typical of wind power data. Evaluation results based on a finite data set are always subject to some degree of uncertainty and the best ranked forecast does not necessarily have to be the truly best one. Depending on the actual setup, e.g., in a benchmarking exercise to hire a forecaster, it should be remembered that even periods of several months may still yield uncertainty in terms of who the best forecaster truly is.

2.2. A maintenance planning example

Let us now assume these forecasts are used for turbine maintenance planning for which an hour with zero production or wind speeds below cut in speed (e.g., 3 m/s) is required. Additional to the models above, we want to use a forecast directly based on the 100 meter wind speed numerical prediction, which forecasts conditions suitable for maintainance when the numerical prediction falls below 3 m/s.

Table 3 shows the contingency tables (to be introduced and thoroughly discussed in Section 3.2.1) for this simple model and the absolute loss function model from the previous subsection. Since the absolute loss model predicts zero generation very rarely (only four times in the whole test data set) it is not of much value for this application and only predicts one event, suitable for maintenance, correctly. Thus, even though the local linear model is clearly more advanced and predicts the correct outcome (correct positive and negative) more often (6192+1=6193 versus 5890+206=6096), it is not of much value for this specific application and in most practical applications easily outperformed by the direct numerical model output. This example shows that the value of a forecast clearly depends on the intended application and that not always the forecast with the best quality is the one that has the highest value.

3. Evaluation metrics
Forecast evaluation is often used to test if forecasts are reasonable and to analyse their performance in various situations, which can help to improve the forecast models. This is often referred to as forecast verification and is usually done by employing different metrics or graphical representations. Furthermore, forecast evaluation is necessary to compare different forecasts to each other, for example to select the best forecast provider for a specific application. In principle, the same metrics as for verification can be used, however, usually single valued metrics or scoring rules are preferred to graphical devices. Since this paper mainly focuses on forecast comparison, we will mainly regard single valued metrics but also cover a few useful important graphical verification devices.

In the following we list a number of scoring rules. This is clearly only a selection of the most widely used metrics and is not a comprehensive list. We also omit to describe theory about desired properties of scoring rules, such as the importance of being proper and refer to e.g., Gneiting and Raftery (2007) for more details.

This section is divided into subsections for different forms of forecasts. The first subsection focuses on deterministic point forecasts (single valued forecasts), the second subsection treats probability forecasts for binary events and the last two subsections present metrics for distributional probabilistic forecasts in the uni- and multivariate case respectively.

3.1. Single valued wind power forecasts

This subsection compares a set of single valued forecasts \(\hat{y}_t, t = 1, \ldots, N \) to corresponding observations \(y_t, t = 1, \ldots, N \). Clearly, a good forecast \(\hat{y}_t \) should be as close to \(y_t \) as possible. Here, various approaches are listed to measure the distance between forecasts and observations, i.e. the quality of a forecast.

Bias

The bias (i.e., mean or systematic error) is defined as

\[
Bias = \frac{1}{N} \sum_{t=1}^{N} (\hat{y}_t - y_t)
\]

(5)

and measures the average difference between the forecast and observations, which can easily be seen when reformulating (5) as

\[
Bias = \frac{1}{N} \sum_{t=1}^{N} \hat{y}_t - \frac{1}{N} \sum_{t=1}^{N} y_t,
\]

(6)
As an illustration, Figure 3 shows example observations, two different forecasts and their averages. Forecast 1 has very little correlation to the observations (correlation coefficient <0.02) but has the same average as the observations and thus a very small bias of 0.01. In contrast, Forecast 2 predicts the evolution of the observations perfectly accurately but is always 0.2 too low, which results in a bias of −0.2.

Thus, the bias only measures the ability of a forecast to predict the right average level but does not give any information about the forecasts ability to predict specific events (commonly referred to as resolution or discrimination ability). Since a known bias can easily be corrected by adding a constant, a low bias should be more seen as a necessary condition than a forecast quality measure.

(Root) mean squared error - (R)MSE

The mean squared error is defined as

\[
MSE = \frac{1}{N} \sum_{t=1}^{N} (\hat{y}_t - y_t)^2
\]

and measures the mean squared distance between forecasts and observations. The root mean squared error

\[
RMSE = \sqrt{MSE}
\]
contains the same information but has the same physical unit as the observations and forecasts (e.g. kW for wind power).

Since errors contribute to the MSE quadratically, larger errors are penalized strongly (see also Figure 1). Therefore, this error measure is particularly useful for applications where large errors are related to high costs while small errors lead to relatively low costs. Despite the popularity of this error metric, there actually exist almost no examples in wind power applications that follow such a cost function. One example could be the cost of reserve energy available to power system operators, which typically becomes more expensive the more is required. In this case, the costs incurred as a result of wind power forecast errors will not be in proportion to the size of the errors; however, it will likely not be symmetric or quadratic either, and will change over time. In general it is far more common for costs to be in proportion to the size of a forecast error (perhaps asymmetrically, as in quantile loss), or discrete based on thresholds, than in proportion to the squared error.

Mean absolute error - MAE

The mean absolute error is defined as

\[
\text{MAE} = \frac{1}{N} \sum_{t=1}^{N} |\hat{y}_t - y_t|
\]

and measures the mean absolute distance between forecasts and observations. In contrast to the RMSE errors are penalized proportionally (see also Figure 1). Hence, it is well suited for applications where the cost of errors is directly related to its magnitude. For example, the economic consequence of a forecast error may be the product of forecast error and some price-per-unit. This is more common in contractual arrangements between forecast vendors and their customers (or regulators) than in energy markets.

Quantile score - QS

The quantile score also measures the absolute error but weights it differently whether the error is positive or negative. It is defined as

\[
\text{QS}(p) = \frac{1}{N} \sum_{t=1}^{N} (\hat{y}_t - y_t) (\mathbb{1}(y_t \leq \hat{y}_t) - p)
\]

where \(0 < p < 1\) is the weighting of positive errors (i.e. \(y_t > \hat{y}_t\)) while negative errors are weighted with \(1 - p\). The right panel in Figure 1 shows the contribution of errors exemplary for \(p = 0.3\).

This metric is called quantile score because it can be shown that it is minimized by the \(p\)-quantile of the predictive distribution. The quantile score should be used in situations where it is known that the costs of positive and negative errors differ such as in dual-price electricity markets, where the economic cost of over-contracting is usually less than for under-contracting. In this situation the expected cost is minimized by deliberately over-contracting in order to reduce exposure to large costs at the expense of increasing exposure to small costs, as in Pinson et al. (2007).
Economic value and decision making

As already noted in the description of the different metrics above, there are certain situations or applications that suit certain metrics very well. Before selecting a metric to base a forecasting model on, it is therefore important to know the expected costs related to inevitable forecast errors. Clearly, in many situations the cost function is more complex and cannot be directly described by any of the above metrics but if it is known, it can directly serve as a metric and so directly reflect the economic value of a forecast. Where the economic cost takes the form of a cost-loss ratio, the optimal decision is a quantile, and Murphy diagrams may be used to evaluate and visualise the range of all economic scenarios (Ehm et al. 2016).

However, in many situations the cost function is not clear, is effected by many other factors, can vary over time or a forecast may be used for different applications with different cost functions. In such a situation, decisions should be based on a combination of different metrics such as Bias, MAE, RMSE, quantile scores for different values of p, and potential other single valued metrics.

3.2. Forecasts of binary events

Often forecast users are interested in the occurrence of specific events and want accurate forecasts of them. Examples could be ramps or cut-outs. Modern forecast systems usually provide probabilistic forecasts for such events, e.g., the probability of cutting-out between 10am and 11am tomorrow. The forecast users then have to decide for themselves at what probability threshold they want to take action. This threshold should be related to the costs of an action and the loss in case no action has been taken and it can easily be shown that usually the expected revenue is maximized when action is taken whenever the predicted probability exceeds the cost loss ratio.

There are two main approaches to evaluate such forecasts. First, metrics such as the Brier score or the area under the receiver operating characteristic curve (ROC, see below) can be used to directly measure the accuracy of the probabilistic forecast. Alternatively, the forecasts can be evaluated based on the actions that have been taken, thus directly reflecting the economic value of the forecast.

In the following let $\hat{z}_t, t = 1, \ldots, N$ be a probability forecast ($0 \leq \hat{z}_t \leq 1$) for the observation z_t, which has the value 1 when the considered event occurs and 0 if not.

Contingency table and derived metrics

Let us consider the cost loss function is well known and thus a threshold th can be defined to take action. Then the forecast probabilities \hat{z}_t can be transformed into binary forecasts

$$\hat{z}_t^* = \begin{cases} 1 & \text{if } \hat{z}_t > th \\ 0 & \text{else} \end{cases}$$

A contingency table summarizes the quality of the forecast by displaying the number of

- hits – forecast event to occur, and did occur
- misses – forecast event not to occur, but did occur
- false alarms – forecast event to occur, but did not occur
Table 4: Contingency table

<table>
<thead>
<tr>
<th>Forecast</th>
<th>Observation</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>hits</td>
<td></td>
<td>miss</td>
</tr>
<tr>
<td>no</td>
<td>false alarms</td>
<td></td>
<td>correct negatives</td>
</tr>
</tbody>
</table>

- correct negatives – forecast event not to occur, and did not occur

Table 4 illustrates the construction of a contingency table and Table 3 shows 2 examples. Contingency tables can give a nice overview over the forecast performance but are difficult to use for forecast comparison. Therefore several different single valued metrics can be derived from it. Examples are the hit rate (HR)

\[
HR = \frac{\text{hits}}{\text{hits} + \text{misses}}
\]

(12)

or the false alarm rate (FAR)

\[
FAR = \frac{\text{false alarms}}{\text{false alarms} + \text{correct negatives}}
\]

(13)

Similarly, scores such as accuracy, bias score, threat score, Peirce’s skill score, or Heidke skill score can be derived from the entries in the contingency table. For more details see e.g., Jolliffe and Stephenson (2012).

If the cost of action (C) and the loss in case of no action (L) are known, they can be used to directly derive the costs related to a forecast.

\[
\frac{C(\text{hits} + \text{false alarms}) + L(\text{misses})}{N}
\]

(14)

where \(N = \text{hits} + \text{false alarms} + \text{misses} + \text{correct negatives}\).

Receiver operating characteristic (ROC)

If the cost loss function is not known or not constant over time it can be better to directly evaluate the probabilistic forecast. One common approach to do so is the receiver operating characteristic (ROC). The ROC is a plot of the hit rate (HR; Equation 12) versus the false alarm rate (FAR; Equation 13) and by connecting a number of points for different thresholds \(th\) a curve is drawn that starts at (0,0) and ends at (1,1). Figure 4 shows an example ROC curve.

A well performing forecast should have a high hit rate and a low false alarm rate so that the curve should lie as much in the upper left corner of the plot as possible. Randomly forecasting probabilities between 0 and 1 (forecast with no skill) would lead to a diagonal ROC curve.

To compare forecast models to each other, it is common to derive the area under the ROC curve which summarizes in a single value how far the ROC curve is away from the no-skill
Figure 4: Example ROC plot. The thick black line shows the ROC curve while the diagonal
thin line shows the ROC of a forecast with no skill. The area under the curve is shown in red
shading.

diagonal. However, it should be noted that ROC curves and AUC do not consider reliability
and therefore should be accompanied by reliability diagrams (Gneiting and Vogel 2018).

Brier score - BS

The Brier score is given by

$$BS = \frac{1}{N} \sum_{t=1}^{N} (\hat{z}_t - z_t)^2,$$

(15)

which is equivalent to the mean squared error in Equation 7 but for probability forecasts \hat{z}_t
and binary observations z_t instead of continuous variables.

The Brier score can take values between 0 and 1 with smaller values indicating better fore-
casts. Murphy (1973) showed that the Brier score can be decomposed into reliability (REL),
resolution (RES), and uncertainty (UNC)

$$BS = REL - RES + UNC$$

(16)

Reliability denotes the property of a forecast to be in line with the conditional relative fre-
cuencies of the observations, i.e., in the long run an event should occur in 40% of the cases the
probability forecast is 40%. Resolution is the property of a forecast to discriminate between
situations, i.e., a forecast that has almost the same value every day has a bad (low) resolution.
Uncertainty is the base uncertainty in the outcome of the considered event and is independent
from the forecast. This decomposition can be very useful to examine the forecast performance
and find where forecast models have problems.
Reliability diagram

As written above, reliability is the property of a probabilistic forecast to predict probabilities that fit to the relative frequencies in the data. A probabilistic forecast that is not reliable can lead to wrong decisions when the predicted probabilities are interpreted directly. As such, it should be seen as a necessary condition of a good probabilistic forecast, similar to the bias for deterministic forecasts.

As shown in Section 3.2.3 the reliability can be assessed as a part of the Brier score. Alternatively, reliability diagrams are related graphical devices that can be used for assessing the reliability of binary probabilistic forecasts. In reliability diagrams, the observed frequencies are plotted against the predicted probabilities. Therefore the interval $(0, 1)$ is divided into several subintervals and relative frequencies conditional on forecasts falling in each of these intervals are plotted against the interval center or median. For reliable forecasts, observed and predicted frequencies should be similar so that their reliability diagram should be close to a diagonal line.

Traditionally, reliability diagrams also contain a refinement distribution subplot which show histograms of the predicted probabilities (e.g., Wilks 2011). These show the confidence of a forecaster, which is high if probabilities close to 0 and 1 occur frequently and is low when the predicted probabilities are always similar. The refinement distribution can also be used to estimate the expected sampling variation of the reliability diagram. If there are only few data in one subinterval this variation is expected to be higher than for well populated intervals. Bröcker and Smith (2007) proposed another approach to estimate this sampling variability, based on consistency bars that show the potential deviation of actually perfectly reliable forecasts due to limited sampling. This concept of consistency bars was then generalized by Pinson et al. (2010), arguing that it is not only limited sampling, but also correlation, that affect estimates of reliability. This ought to be accounted for when estimating and visualizing consistency bars.

Figure 5 shows an example reliability diagram with consistency bars and refinement distribution. In this example, the reliability diagram is close to the diagonal but falls outside the bootstrap confidence intervals in some of the bins.

3.3. Probabilistic forecasts of continuous variables

Probabilistic forecasts have been shown to be beneficial for various decision making processes in wind power applications (e.g., Bremnes 2004; Pinson et al. 2007; Dobschinski et al. 2017; Bessa et al. 2017) and therefore are becoming more and more popular. Thus, nowadays many forecast providers offer probabilistic wind power forecasts in the form of quantiles (perhaps in the form of prediction intervals, which are just specific quantiles), ensembles (set of possible scenarios), or full parametric distributions. The advantage of probabilistic forecasts is that they provide information about the forecast uncertainty and allow to take this into account for decision making. Sometimes, probabilistic forecasts are used optimally by taking specific quantiles as point forecasts, which maximize the revenue. If the required quantiles are not provided directly, they can be easily derived from full continuous probabilistic distributions, by interpreting an ensemble as a set of quantiles, or by interpolating between quantiles. In such a case, a straightforward way to evaluate the accuracy of the forecast is to use the quantile score (see Section 3.1).

Unfortunately, decision making processes based on probabilistic forecasts are often much more
complex and sometimes made manually and based on various inputs, not only the wind power forecast. In such a case, the full forecast distribution should be evaluated. There has been a number of metrics proposed for probabilistic forecast evaluation and below we list the most important ones.

Verification Rank histogram and Probability integral transform (PIT) histogram

The Verification Rank histogram and PIT histogram are closely related graphical devices that are commonly used to examine the reliability of probabilistic forecasts. Reliability again denotes the property of a probabilistic forecast to be in line with the relative frequencies of observations, i.e., in the long run 20% of the data should fall below the 20% quantile.

The verification rank histogram is used to examine the reliability of ensemble forecasts by counting the number of observations falling in the different intervals that are specified by the ensemble forecasts. This is equivalent to a histogram of the ranks of the observations within the ensemble forecasts thus the name verification rank histogram. If the ensemble forecast is reliable, the verification rank histogram should be flat. Figure 6 shows an example verification rank histogram. Note that here the deviations from perfect reliability are most probably an effect of sampling variations and that the forecast here can be regarded as reliable. With a longer data set the histogram would become more and more flat.

A similar plot can also be drawn for forecasts that are given as a set of quantiles. Though, depending on which quantiles are given, the histogram does not have to be flat but should follow the nominal probabilities of the different intervals.

PIT histograms are the continuous counterpart of verification rank histograms and show the
distribution the probability integral transform, which is
\[\text{PIT}_t = \hat{F}_t(y_t) \]
where \(\hat{F}_t(y_t) \) is the predicted cumulative distribution function. If the forecasts are well calibrated and reliable, the PIT histogram should be flat as well. Note that when discrete cumulative distribution functions are derived from ensemble forecasts, the resulting PIT histogram is almost identical to the verification rank histogram only with a different scale on the x-axis.

Reliability is a crucial property of probabilistic forecasts. Unreliable forecasts can lead to not ideal decisions and thus to financial loss. Looking at rank or PIT histograms should therefore be one of the first steps in evaluating probabilistic forecasts and if they deviate significantly from uniformity the forecasts should be calibrated or only be used with care.

Reliability should also be seen more like a property a forecast has or does not have and the reliability of different forecasts should in general not be ranked.

\textit{Continuous ranked probability score}

The continuous ranked probability score is one of the most common single value scores to evaluate the accuracy of probabilistic forecasts of continuous variables. It evaluates the quality of the predicted cumulative distribution function and is defined as
\[\text{CRPS} = \frac{1}{N} \sum_{t=1}^{N} \int_{-\infty}^{\infty} \left[\hat{F}_t(x) - 1(x \leq y_t) \right]^2 dx \]
where \(1(x \leq y_t) \) is the indicator function that is 1 if \(x \leq y_t \) and 0 otherwise. Figure 7 shows a schematic plot for the derivation of the CRPS. The CRPS for a specific forecast occasion...
Figure 7: Schematic plot for the derivation of the continuous ranked probability score. The black curve shows the predicted cumulative distribution function and the red curve indicates the step function $1(x \leq y_t)$. The difference between these two lines is shown as red shaded area.

is the integral of the squared distances between the cumulative distribution function and the step function defined by the observed value. Therefore it is not directly the shaded area in Figure 7 but related to it.

Note that the integrand in Equation 18 can be interpreted as a Brier score (Equation 15) so that the CRPS can be seen as the integral over the Brier score. There are also other equivalent definitions of the CRPS, e.g. (Laio and Tamea 2007),

$$CRPS = \int_0^1 \hat{F}_t^{-1}(\tau) - y_t) \left(1 \left(y \leq \hat{F}_t^{-1}(\tau) \right) - \tau \right) d\tau,$$

which shows that the CRPS is also closely related to the quantile score (Equation 10), which is equal to the integrand in Equation 19. Another definition proposed by Gneiting and Raftery (2007) is

$$CRPS = \frac{1}{N} \sum_{t=1}^N \left[\frac{1}{2} E|\hat{Y}_t - \hat{Y}'_t| - E|\hat{Y}_t - y_t| \right],$$

where $E|\cdot|$ denotes the expected value and \hat{Y}_t and \hat{Y}'_t are independent copies of a random variable with distribution function \hat{F}_t. From this definition, a formula for forecasts given as ensembles or quantiles can be easily derived as

$$CRPS = \frac{1}{N} \sum_{t=1}^N \left[\frac{1}{M} \sum_{m=1}^M |\hat{y}_t^{(m)} - y_t| - \frac{1}{2M^2} \sum_{m=1}^M \sum_{l=1}^M |\hat{y}_t^{(m)} - \hat{y}_t^{(l)}| \right],$$

where $\hat{y}_t^{(m)}$, $m = 1, \ldots, M$ are ensemble members or predicted quantiles.
Hersbach (2000) showed that the CRPS, similar to the Brier score, can be decomposed into reliability, resolution and uncertainty.

Figure 8 shows the CRPS contributions of different observations. It can be seen that, except close to the distribution mean, deviations from the distribution mean contribute almost linear to the CRPS. This is comparable to the mean absolute error (see Figure 1) and in fact, for a deterministic forecast (i.e., the predictive cumulative distribution function is a step function as well), the CRPS and the mean absolute error are equivalent.

Ignorance (logarithmic) score

The ignorance score, also called logarithmic score is defined as

\[IS = \frac{1}{N} \sum_{t=1}^{N} \log(\hat{f}_t(y_t)) \]

where \(\hat{f}_t(y_t) \) is the predicted probability density function evaluated at the value of the observation \(y_t \). Since a probability density function can not easily be derived from quantiles or ensembles, the ignorance score is only applicable for full continuous distribution forecasts.

As it can be seen in Figure 8 the ignorance score penalizes deviations from the distribution
center much more heavily than the CRPS. In the case of a normal predictive distribution
the ignorance score is, up to a factor, equivalent to the squared loss. Similar to the choice
between mean absolute error and (root) mean squared error, the ignorance score should be
pferred if large forecast errors are related to very high costs.

3.4. Multivariate probabilistic forecasts

Multivariate forecasts are usually provided as a set of scenarios that are consistent in time
and/or space and consider the spatio-temporal correlations. E.g., these could be a set of
possible realizations for the 24 hours of the next day. Multivariate forecasts are important
in short-term wind power forecasting and therefore have become popular in the wind power
literature. For example, Tastu et al. (2010) showed that when considering forecasts for a
set of wind power production sites, properly accounting for spatio-temporal inter-dependence
between neighbouring sites results in a reduction in prediction errors compared to simply
issuing independent forecasts of individual sites.

Similar to other forecast formats, multivariate forecasts are, depending on the application,
used for decision making. Multivariate forecasts could e.g., be used to estimate the probability
that a threshold is exceeded within a certain time period or that the accumulated wind power
in a region exceeds a certain threshold. In such situations, these derived forecasts can be
evaluated directly with evaluation metrics from the previous subsections (Pinson and Girard
2012). However, it is also possible to evaluate multivariate scenarios directly using e.g., one
of the metrics presented below.

In the following we present some of the most popular multivariate scoring rules. However,
multivariate forecast evaluation is still a very active research field and it is possible that
other, perhaps better evaluation metrics will become more popular in the near future. We
de note multivariate observations as vectors \(y_t \), which can contain a set of forecasts for different
locations, different lead times, or both. Multivariate forecasts are usually provided as set of
\(M \) scenarios in \(K \) dimensions \(\mathbf{\hat{y}}_t^{(m)} = (\hat{y}_{t,1}^{(m)}, \hat{y}_{t,2}^{(m)}, \ldots, \hat{y}_{t,K}^{(m)})^\top, m = 1, \ldots, M. \)

Multivariate ignorance or Dawid-Sebastiani score

Similar to the univariate case, multivariate forecasts could be evaluated based on the algorithm
of their multivariate density function \(\hat{f}_t(y_t) \)

\[
IS = \frac{1}{N} \sum_{t=1}^{N} \log(\hat{f}_t(y_t))
\]

However, usually multivariate forecasts are not provided in parametric form but rather as a
set of possible multivariate scenarios. In such a case, the closely related multivariate Dawid-
Sebastiani score (Dawid and Sebastiani 1999) can be used

\[
DS = \frac{1}{N} \sum_{t=1}^{N} \left[\log(\det \hat{\Sigma}_t) + (y_t - \mathbf{\hat{y}}_t)^\top \hat{\Sigma}_t^{-1} (y_t - \mathbf{\hat{y}}_t) \right]
\]

where \(\mathbf{\hat{y}}_t \) is the mean and \(\hat{\Sigma} \) the covariance matrix of the forecasts \(\mathbf{\hat{y}}_t^{(m)} \) and \(\det \hat{\Sigma}_t \) is the
determinant of \(\hat{\Sigma}_t \). The Dawid-Sebastiani score is equivalent to the ignorance score for a
predicted multivariate normal distribution with mean \(\mathbf{\hat{y}}_t \) and covariance \(\hat{\Sigma} \). Thus, it is the
ignorance score assuming the multivariate scenarios are samples from a multivariate normal distribution and estimating the distribution parameters with mean and covariance matrix. For wind power this assumption might not always hold.

Similar as the univariate ignorance score, its multivariate version penalizes unlikely observations, i.e. misidentified tails, very hard, which may or may not be desired depending on the problem of consideration.

Conditional likelihood and censored likelihood score

In order to maintain the nice properties of the multivariate ignorance score while damping the penalty associated with unlikely observations (cf. above), Diks et al. (2011) proposed two scores that accomplishes exactly that. Let \(A \) be a subset of the sample space of the forecast, such that observations that fall outside \(A \), i.e. in \(A^c \) are denoted "unlikely observations". The simplest of the two scores is the conditional likelihood score,

\[
\text{CDLS} = \frac{1}{N} \sum_{t=1}^{N} I(y_t \in A) \log \left(\frac{f_t(y_t)}{\int_A f_t(u)du} \right)
\]

which is the ignorance score only evaluated for observations within \(A \). Hence, this can be used to exclude unlikely observations from the forecast evaluation. The other score in question is the censored likelihood score,

\[
\text{CSLS} = \frac{1}{N} \sum_{t=1}^{N} I(y_t \in A) \log f_t(y_t) + I(y_t \in A^c) \log \left(\int_{A^c} f_t(u)du \right)
\]

Under this score, observations that fall outside \(A \) are still evaluated. The penalty for each unlikely observation is then based on the total probability mass on \(A^c \) rather than on the probability of the unlikely observation itself (as is the case for the ignorance score). Hence, unlikely observations are penalized in a more robust manner than in the ignorance score.

Multivariate continuous ranked probability or energy score

As for the ignorance score, the CRPS can also be extended to cover multivariate scenarios, which has been proposed under the name energy score by Gneiting and Raftery (2007)

\[
\text{ES} = \frac{1}{N} \sum_{t=1}^{N} \left[\int_{-\infty}^{\infty} (\tilde{F}_t(x) - 1(x \geq y_t))^2 dx \right]
\]

where \(\tilde{F}_t() \) is the predicted multivariate cumulative distribution function.

If the forecasts are given as a set of scenarios, the formula

\[
\text{ES} = \frac{1}{N} \sum_{t=1}^{N} \left[\frac{1}{M} \sum_{m=1}^{M} ||\hat{y}^{(m)}_t - y_t|| - \frac{1}{2M^2} \sum_{m=1}^{M} \sum_{l=1}^{M} ||\hat{y}^{(m)}_t - \hat{y}^{(l)}_t|| \right]
\]

can be used where \(||d|| \) is the Euclidean norm.

Similar to the univariate case, the CRPS does not penalize unlikely observations as strongly as the ignorance score.
Variogram score

Pinson and Girard (2012) showed that the energy score is not very sensitive to misspecification in the multivariate correlation structure and puts most weight on the quality of the marginal distributions. In applications where the correlation structure is important this can be undesirable. As an alternative score that puts more weight on the correlation structure, Scheuerer and Hamill (2015) proposed the variogram score

\[
VS_p = \frac{1}{N} \sum_{t=1}^{N} \sum_{i=1}^{K} \sum_{j=1}^{K} w_{ij} (|y_{t,i} - y_{t,j}|^p - E[|\hat{Y}_{t,i} - \hat{Y}_{t,j}|^p])^2
\]

(29)

where \(y_{t,i}, i = 1, \ldots, K\) are the components of the multivariate observations \(y_t = (y_{t,1}, y_{t,2}, \ldots, y_{t,K})^\top\), \(\hat{Y}_{t,i}, i = 1, \ldots, K\) are components of a random vector \(\hat{Y}_t\) that are distributed according to a forecast distribution \(\hat{F}_t(y_t)\), and \(w_{i,j}\) are nonnegative weights that can be assigned if desired. \(p\) is the order of the variogram score and affects how closely the distribution of \(|\hat{Y}_{t,i} - \hat{Y}_{t,j}|^p\) attains symmetry. Scheuerer and Hamill (2015) thus found \(p = 0.5\) to be optimal for model separation. If the forecasts are provided as scenarios, \(E[|\hat{Y}_{t,i} - \hat{Y}_{t,j}|^p]\) can be replaced by \(\frac{1}{M} \sum_{m=1}^{M} |\hat{y}_{t,i}^{(m)} - \hat{y}_{t,j}^{(m)}|^p\).

The scores ability to distinguish between models in terms of their correlation structure becomes more apparent with increasing dimensions, and the computation time is quadratic, making it relatively fast and applicable for high-dimension scenarios compared to the available alternatives such as the ignorance score. The main downside of the score is that it does not cover calibration at all, i.e. different models with different expectations but identical correlation structures will be scored equally. Therefore, use of the variogram score may be supplemented by univariate CRPS or ignorance scores to make sure calibration and sharpness of the marginal distributions are addressed as well.

4. Evaluation setup

As pointed out in Section 2 an appropriate setup is required to get meaningful evaluation results and since these results are subject to uncertainty it is important to know how to interpret them. This section first regards different aspects and approaches for setting up an evaluation task such as data preparation or data set size. Subsequently, different approaches are presented to estimate the significance of evaluation results, which, for many decisions, can be as important information as the results themselves. An even more practical oriented discussion on this topic can also be found in Möhrlen et al. (2019).

4.1. Data preparation/missing data/corrupt data

Evaluation results are highly dependent on the data set on which the evaluation is performed. Therefore it is important to use an appropriate data set for evaluating wind power forecasts. First, it is crucial that the selected data set is representative for the application the forecasts are supposed to be used for. E.g., the data set should cover all seasons, times of day, locations, etc. that they are planned to be used for or at least to a subset of these that is known to be representative. Second, the data set should be long enough for the results to be meaningful. Evaluation results are always subject to uncertainty, which increases with smaller data sets.
In the case of small data sets it can therefore be difficult to see significant differences between competing forecast models. For limited data sets, cross validation approaches (see Section 4.2) can help to obtain more meaningful results.

Another aspect to consider is the aggregation of lead times. If forecast users are interested in the overall performance of a forecast model they may choose to evaluate all lead times at once. If forecasts for different lead times are used for different applications (e.g., trading in intraday and day ahead markets), forecast errors at different lead times are related to different costs, or users have the possibility to use different forecast models for different lead times it makes sense to evaluate forecast performance on lead times or subsets of lead times separately.

When comparing different forecasts to each other it is crucial to use exactly the same data sets. Results of different locations, seasons, lead times etc. are in general not comparable. If a certain forecast is not available for a specific time, this time has to be disregarded for all the other forecasts as well. Else, if e.g., forecasts are missing for days that are particularly difficult to predict, they would in total perform much better than forecasts that are expected to have high errors at these days.

Another important decision to be made is whether curtailment data should be kept or removed from the data before evaluation. Again this decision should be made based on the intended application. If the forecast user is interested in the available power and not in the real power production, data with curtailment should be removed from the evaluation data set since errors when not predicting these cases are not meaningful for the forecast performance. If periods of curtailment are retained, it may be instructive to separate errors that resulted from unforeseen curtailment from those that resulted from others as average scores will conflate these effects.

4.2. Cross validation

In all evaluation tasks, it is of crucial importance to have independent training and test data sets, meaning that the data on which forecast models are evaluated should never be used in the model development. This is also reflecting a real forecasting task where the forecasted data is not available for developing the model. Violating this important condition can lead to very wrong conclusions. Often, only a limited data set is available on which the forecast models have to be trained and evaluated. Simply separating these data into two sets can on the one hand limit the training data such that the forecast models loose accuracy and on the other hand limit the test data such that the evaluation results are less meaningful and might be influences by few unusual events.

Cross validation is a frequently used tool to assure independence but still make efficient use of the available data. There are different cross validation approaches but all of them use the basic idea of repeatedly training the models on a major part of the data and evaluate them on the remaining part. By repeating this for different subsets, the evaluation results become less variable even if the actual test data part is small.

Cross-validation types for a data set of length N:

- k-fold cross validation is probably the most frequently used approach for wind power forecast evaluation. The original data set is split into k equally sized subsets. Then forecasts for each of the subsets are derived from models trained on all data leaving out the subsets that are to be forecasted. After repeating this for all partitions, independent predictions for the full data set are available for evaluation.
Figure 9: Schematic illustration of 6-fold cross validation with temporally contiguous blocks. The top box illustrates the full data set where the red blocks show the part of the data that is used for training the forecast model. The bottom row illustrates the forecasts where the blue block is the one that is predicted by the model that has been trained on the red blocks above. By repeatedly leaving out different blocks, independent predictions for the full time series can be derived.

- leave-one-out cross validation: derive independent forecasts for all N data points by fitting N models on the data set, leaving out the data point that is to be predicted. Similar to k-fold cross validation this results in independent forecasts for the full data set but requires N times fitting the models.

- leave-p-out cross validation: similar to leave-one-out but derive forecasts for a set of p events by leaving out those in fitting the model. Usually this is repeated on all ways to cut the full data set, so that the model has to be fitted $\binom{N}{p}$ times where $\binom{N}{p}$ is the binomial coefficient. Different to k-fold cross validation and leave-one-out cross validation each data point is predicted multiple times.

- random subsampling: randomly assign data to a train and a test data set and repeat this several times.

Since in wind power forecasting evaluation, model fitting often is rather computationally expensive, k-fold cross validation is usually preferred to leave one-out or leave-p-out cross validation. Another advantage of k-fold cross validation is, that temporal blocks can be selected as partitions thus avoiding problems with temporal correlations (see below). For the same reason also random subsampling is usually avoided. Figure 9 shows the cross validation procedure schematically.

Temporal correlation

Cross validation assumes that the statistical properties of the dataset stay constant with time so that using future data for training is equivalent to using past data. However, wind power data is usually temporally correlated, which often implies that data that is temporally close to each other often behave similar. Thus, if the data just before and after a specific data point is used for training, the forecasts are not entirely independent and can lead to wrong conclusions. Therefore, leave-one-out cross validation can be problematic and in k-fold cross validation the partitions should be selected in temporally connected blocks and not randomly sampled.
When a sufficiently large dataset is available, it may be preferable to simulate operational forecasting and model re-training on a rolling basis. For example, training a model on the first 12 months of data and predicting the 13th month, and then re-training the model using the first 13 months and predicting the 14th, and so on. This structure is inherent to some forecasting methodologies that are explicitly adaptive (Pinson et al. 2008).

4.3. Comparing forecast performance

Most of the time forecast evaluation is used to compare different forecast models to each other, e.g., to select the best model for the intended application. Clearly one could simply compare one or several of the performance measures presented in Section 3 and rank the forecast models accordingly. However, evaluation results are always subject to uncertainty and should therefore interpreted carefully. Figure 10 shows mean squared error results for the example forecasts in Section 2 from different subsets of the test data set. Even though, the forecast model with quantile loss optimization seems to perform slightly worse there are subsets where it shows better mean squared errors than some of the mean squared errors of the other models. The right panel in Figure 10 shows that the sampling variation becomes a bit lower for larger subsamples.

The remainder of this section presents different approaches to estimate the evaluation result uncertainty and the significance of performance differences.

Skill scores

Before regarding the uncertainty of evaluation results we want to introduce skill scores. In the boxplots in Figure 10 a number of mean squared errors are shown for different subsets of the data. The mean squared errors of the quadratic and absolute models are not always lower than that of the quantile model but in fact we cannot say from the figure whether the quantile model is expected to be always worse or not. Possibly, there are subsets where all models perform equally bad and the variation we see is not caused by variation in the ranking of the model but by the variation of the subset data.

To investigate model differences, one should therefore regard error differences or skill scores. A skill score of a metric M is defined as

$$ M_{ref} - M $$

with M_{ref} the score of a reference method and M_{perf} the score of a perfect forecast. Skill scores show the score improvement of a forecast model compared to a reference model where positive values indicate an improvement. Often, basic forecast models such as the long term (climatological) mean or persistence are use as reference but when e.g., a new forecast model should be tested against the one currently in use it makes sense to use the current model as reference.

For many metrics the perfect score is 0, so that often the form

$$ 1 - \frac{M}{M_{ref}} $$

is used. Note also that for some metrics such as the logarithmic score, the perfect score is not finite so that no skill score can be derived.
Figure 10: Sampling variation of mean squared error for different forecasting models. The boxplots in the left panel show the mean squared errors of 20 different samples of length 200 and the boxplots in the right panel show mean squared errors for 10 different samples of length 400.
Figure 11: Mean squared error skill score with the quadratic loss function model as reference. The boxplots show the distribution of the average skill scores for 10 different subsamples (left) and 250 bootstrap samples (right).

Figure 11 left shows the same results as the right panel in Figure 10 but as skill scores with the quadratic loss model as reference. Clearly the quadratic model has skill score 0 itself but compared to Figure 10 it can be clearly seen that the quantile loss model performs worse than the quadratic in all evaluation subsets, which is in the median even around 30% worse.

Bootstrapping

Analyses such as shown in Figure 10 or 11 left can be very useful to estimate the significance of an evaluation result. However, most of the time evaluation data sets are limited and as shown by Figure 10 the sampling variation increases with the usage of smaller evaluation subsets. Bootstrapping (Efron 1981) is a popular resampling approach that reveals similar information but without sacrificing the accuracy of the results. Therefore, for an evaluation data set of length N random samples with replacement (each data point can be sampled several times) of size N are drawn repeatedly and the average scores are derived on these random samples. After repeating this k times, k different average score values are available that reflect the sampling variation of the average score. Similarly, bootstrap averages of score differences can give a good indication of significance of these differences. However, it is important to note, that the bootstrapping approach assumes serial independence of forecast errors so that for
possible positive serial correlation in wind power data the bootstrapping approach can be too
confident.

The right panel of Figure 11 shows the mean squared error skill score variation from bootstrap
sampling. Compared to the 10 subsets in the left panel the average results are very similar
but because the average skill scores are derived on larger samples their sampling distribution
is much lower. Even the difference between the quadratic and absolute loss models becomes
apparent.

Additionally to the larger samples the skill scores are derived on, the differences in the vari-
ations can also partly be caused by serial correlation in the forecast errors. A more quantitative
approach to estimate the significance of results that also takes into account these correlations
is presented in the next subsection.

Diebold-Mariano test

Diebold and Mariano (1995) proposed a statistical test to test for differences in performance
of two forecasts. In the following let $S(\hat{y}_t, y_t)$ be a scoring rule such as the squared error
or the absolute error and $d_t = S(\hat{y}_1^t, y_t) - S(\hat{y}_2^t, y_t)$ be the score difference between two
different forecasts \hat{y}_1^t and \hat{y}_2^t. Furthermore, $\bar{d} = \frac{1}{N} \sum_{t=1}^{N} d_t$ is the mean loss difference and
$\gamma_k = \frac{1}{N} \sum_{t=k+1}^{N} (d_t - \bar{d})(d_{t-k} - \bar{d})$ its autocovariance at lag k. Then the Diebold-Mariano test statistic is

$$DM = \frac{\bar{d}}{\sqrt{\frac{\gamma_0 + 2}{N} \sum_{k=1}^{h-1} \gamma_k}}$$

where h is the number of considered lags and should be selected large enough to not miss any
autocorrelations in the forecast errors. Under the null hypothesis of equal performance the
Diebold Mariano statistic asymptotically follows a standard normal distribution

$$DM \sim \mathcal{N}(0, 1)$$

so that, for a two sided test, the null hypothesis can be rejected when

$$|DM| > z_{\alpha/2}$$

where $z_{\alpha/2}$ is the $1 - \alpha/2$ quantile of the standard normal distribution to the desired α level
of the test.

Note that in the case of serial independence, the Diebold-Mariano statistic in Equation 32
becomes

$$DM = \frac{\bar{d}}{\sqrt{\frac{\gamma_0}{N}}}$$

and thus the Diebold-Mariano test becomes asymptotically equivalent to a paired sample
Student-t test. Care must be taken in the case of over-lapping forecasts and it is suggested in
Diebold and Mariano (1995) that different lead-times should be tested separately, though
an appropriate modification to the denominator of 32 is also a possibility.

Table 5 shows results for the Diebold-Mariano test for the squared errors of the absolute and
quantile loss models compared to the squared loss models from the example of section 2.
These results show clearly, that the difference between the absolute and squared loss models
is not significant on this data set whereas the difference between quantile and squared loss model clearly is (i.e., p-value clearly below a typical $\alpha/2 = 0.025$ confidence level).

Variation in Forecast Performance

The performance of forecasting methodologies will vary according to the predictability of specific situations; however, different methodologies may exploit the various sources of predictability to different degrees. This is particularly relevant to the set-up of underlying numerical weather prediction models which can differ in spatial and temporal resolution, observations available for assimilation and the specific assimilation scheme, parameterisation of physical process that cannot be resolved directly, and other factors (Magnusson and Källén 2013). When comparing forecasts that draw on different sources of predictability, their relative performance will also vary with the prevalence of those sources. Similarly, statistical post-processing methods risk favouring conditions that are abundant in training data but not captured by explanatory features.

Examples relevant to wind power include boundary layer mixing and low level jets. Differences in model performance during these events may manifest in diurnal and/or seasonal variations in forecast performance. Therefore, evaluating and comparing forecast performance based on time-of-day, time-of-year, or weather-type (if such information is available) may reveal valuable information relevant to forecast model selection, model mixing/blending and routes to forecast improvement.

5. Summary

Forecasting has become an important part of the successful integration of wind power in energy systems and markets. Evaluating of these forecasts is very important for selecting a forecast provider, quality control, or forecast model development. Most of the time, forecast errors can be related to some kind of costs and ideally the evaluation should provide information about these expected costs. Since wind power forecast users can be very different such as wind park operators, distribution system operators, transmission system operators, or traders, the forecasts are also used for different applications with different error costs. Therefore, it is important to adjust the forecast evaluation setup to the specific needs of the forecast user. Nevertheless, often just standard evaluation protocols are used and therefore the drawn conclusion might not always be ideal. Furthermore, with the advent of new advanced forecast products such as probabilistic or multivariate predictions also new less intuitive evaluation techniques have been proposed and the risk of selecting inappropriate evaluation approaches has even increased.

This paper revisited different forecast evaluation approaches with a specific focus on selecting the right methods for the specific needs of a forecast user. In the first part of the paper
a simple example case showed that the selection of the right metric is crucial to find the best forecast system for the application these forecasts are needed. Furthermore, it is very important to use an appropriate evaluation setup (e.g., to use a large enough data set) and know how to interpret the results. The second part then presented and discussed a number of metrics that can be useful in wind power applications and the third part discussed the evaluation setup and interpretation of results.

Acknowledgements

This manuscript was created as part of the International Energy Agency (IEA) Wind Task 36 on Forecasting for Wind Energy and we thank in particular Markus Abel Jan Dobschinski, Gregor Giebel, Gianni Goretti, Sue Ellen Haupt, Alexander Kann, Henrik Madsen, Corinna Möhrlein, Will Shaw, Thorsten Simon, Aidan Tuhoy, Stephan Vogt, and John Zach for their comments and participation in various discussions. Jakob W. Messner was supported by EUDP-64015-0559. Jethro Browell is supported by an EPSRC Innovation Fellowship (EP/R023484/1). Research Data Statement: there is no additional data beyond that reported in the paper.

References

Affiliation:
Firstname Lastname
Affiliation
Address, Country
E-mail: name@address
URL: http://link/to/webpage/