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Abstract

Partially ordered patterns (POPs) generalize the notion of classical patterns
studied widely in the literature in the context of permutations, words, compositions
and partitions. In an occurrence of a POP, the relative order of some of the elements
is not important. Thus, any POP of length k is defined by a partially ordered set
on k elements, and classical patterns correspond to k-element chains. The notion
of a POP provides a convenient language to deal with larger sets of permutation
patterns.

This paper contributes to a long line of research on classical permutation patterns
of length 4 and 5, and beyond, by conducting a systematic search of connections
between sequences in the Online Encyclopedia of Integer Sequences (OEIS) and
permutations avoiding POPs of length 4 and 5. As the result, we (i) obtain 13 new
enumerative results for classical patterns of length 4 and 5, and a number of results
for patterns of arbitrary length, (ii) collect under one roof many sporadic results in
the literature related to avoidance of patterns of length 4 and 5, and (iii) conjecture
6 connections to the OEIS. Among the most intriguing bijective questions we state,
7 are related to explaining Wilf-equivalence of various sets of patterns, e.g. 5 or 8
patterns of length 4, and 2 or 6 patterns of length 5.

Mathematics Subject Classifications: 05A05, 05A15
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the National Science Foundation of China (No. 11801447).
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1 Introduction

An occurrence of a (classical) permutation pattern p = p1 · · · pk in a permutation π =
π1 · · · πn is a subsequence πi1 · · · πik , where 1 6 i1 < · · · < ik 6 n, such that πij < πim if
and only if pj < pm. For example, the permutation 31425 has three occurrences of the
pattern 123, namely, the subsequences 345, 145, and 125. Permutation patterns are the
subject of lots of interest in the literature (e.g. see [20] and references therein).

A partially ordered pattern (POP) p of length k is defined by a k-element partially
ordered set (poset) P labeled by the elements in {1, . . . , k}. An occurrence of such a POP
p in a permutation π = π1 · · · πn is a subsequence πi1 · · · πik , where 1 6 i1 < · · · < ik 6 n,
such that πij < πim if and only if j < m in P . Thus, a classical pattern of length k

corresponds to a k-element chain. For example, the POP p =
3 2

1
occurs five times in

the permutation 41523, namely, as the subsequences 412, 413, 452, 453, and 523. Clearly,
avoiding p is the same as avoiding the patterns 312, 321 and 231 at the same time.

POPs can also be defined using one-line notation by providing the minimal set of
relations defining the respective poset. For example, the POP in the example above can be
defined by {1 > 3}, while the POP in Theorem 23 can be defined by {1 > 3, 1 > 2, 4 > 2}.

POPs were introduced in [16], and they were studied in the context of permutations,
words and compositions in [15, 17, 18, 19, 21, 22]. The notion of a POP provides a uniform
notation for several combinatorial structures such as peaks, valleys, modified maxima and
minima, p-descents in permutations, and many others [19]. Moreover, POPs provide a
convenient language to deal with larger sets of permutation patterns. Thus, by noticing
connections to POPs, in this paper we collect under one roof many sporadic results in
the literature related to the avoidance of patterns of length 4 and 5. For example, the
simultaneous avoidance of the patterns 3214, 3124, 2134, and 2143 considered, up to trivial

bijections, in [12] is nothing else but the avoidance of the POP
2
1
4

3
, which suggests

natural directions of research to study the avoidance of the POPs
2
4
1

3
,

4
1
2

3
, etc.

In any case, the starting point in our project was utilization of the software produced
by Stephen Gardiner in 2018 as part of his MSc studies at the University of Strathclyde.
The software is able to go exhaustively through all POPs of length 4 and 5 (length 3
POPs are rather trivial in our context and were omitted) and detect any connections to
the Online Encyclopedia of Integer Sequences (OEIS) [28]. So, our original goal was to
explore the variety of objects in the OEIS that are equinumerous to length 4, 5 POP-
avoiding permutations, and to justify any observations, which often required non-trivial
enumeration or a bijection, but sometimes were given “for free” via exactly the same
pattern avoidance studied previously. Some of our results for length 4, 5 POP-avoiding
permutations follow from more general theorems we prove.

We ended up with observing connections to 38 sequences in the OEIS, out of which
18 sequences have no known interpretation in terms of pattern avoidance. We justified
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POP Sequence (beginning with n = 1) OEIS Ref

2

1

3 4 1, 2, 6, 12, 20, 30, 42, 56, 72, . . . A103505 Thm 8

3

1

2 4 1, 2, 6, 12, 25, 48, 91, 168, 306, . . . A045925 Thm 9
A129952

2
1

3 4 1, 2, 6, 16, 40, 96, 224, 512, 1152, . . . A057711 Thm 10

2

1

43 1, 2, 6, 18, 54, 162, 486, 1458, 4374, . . . A025192 Thm 11

2
1

3
4

1, 2, 6, 20, 68, 232, 792, 2704, 9232, . . . A006012 Thm 12

2
1
3

4 1, 2, 6, 20, 70, 252, 924, 3432, 12870, . . . A000984 Thm 13

Table 1: POPs of length 4 that are particular cases in our general theorems. For the
highlighted OEIS sequences no interpretation in terms of permutation patterns was known
until this work. The connections to permutation patterns in A129952, A025192, A006012,
A000984 are via [8], [4], [5], [12], respectively.

all but 6 connections all related to POPs of length 5. Also, in our studies, we obtain 13
new enumerations for pattern avoiding permutations for patterns of length 4 and 5, in
particular, contributing to a long line of enumerative results on length 4 patterns, e.g.
with enumeration of triples of such patterns being concluded in [11].

Our results can be found in Tables 1–4, and our conjectures in Table 5. Also, in
Section 2 we give a number of general results. Note that all these results can give new
results for many more patterns/POPs using Theorem 1, which discusses equivalence mod-
ulo the complement of poset labels, or reflecting a poset with respect to a horizontal line.
However, we would like to stress that the goal of this paper is not in achieving any clas-
sifications (which is an interesting direction, of course), instead considering just a single
POP corresponding to a sequence in the OEIS.

Permutations of length n are called n-permutations in this paper, and Sn denotes the
set of all n-permutations. For an n-permutation π, the complement c(π) of π is obtained
from π by replacing each element x by n + 1 − x. The same operation is well-defined
on labels {1, 2, . . . , n} of an n-element poset. Also, the reverse r(π) of π is obtained by
writing the elements of π in the reverse order. The complement, reverse, and usual group
theoretical inverse are known as trivial bijections from Sn to Sn.

We let Sn(p) be the set of n-permutations avoiding p. Patterns p1 and p2 are Wilf-
equivalent if for n > 0, |Sn(p1)| = |Sn(p2)|. The definition of Wilf-equivalence can be
naturally extended to the simultaneous avoidance of sets of patterns. For example, Re-
mark 29 discusses three non-trivially Wilf-equivalent to each other triples of patterns.
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POP Sequence (beginning with n = 1) OEIS Ref
A214663

4

1

2 3 1, 2, 6, 12, 25, 57, 124, 268, 588, . . . A232164 Thm 14

2
1

3
4

1, 2, 6, 18, 50, 130, 322, 770, 1794, . . . A048495 Thm 15

3
1

2
4

1, 2, 6, 18, 52, 152, 444, 1296, 3784, . . . A077835 Thm 16

4
1

2
3

1, 2, 6, 18, 50, 134, 358, 962, 2594, . . . A271897 Thm 18

2
1

4 3 1, 2, 6, 16, 40, 100, 252, 636, 1604, . . . A111281 Thm 19

3
1

4 2 1, 2, 6, 16, 44, 120, 328, 896, 2448, . . . A002605 Thm 20

1
2

4 3 1, 2, 6, 16, 42, 110, 288, 754, 1974, . . . A111282 Thm 21

2
1

3
4

1, 2, 6, 19, 59, 180, 544, 1637, 4917, . . . A111277 Thm 22

3
1

2
4 A052544

1, 2, 6, 19, 60, 189, 595, 1873, 5896, . . . A204200 Thm 23

Table 2: POPs of length 4 with longest chain of size 2. For the highlighted OEIS se-
quences no interpretation in terms of permutation patterns was known until this work.
Connections to A111281, A002605, A111282, A111277 are via [1], [13], [1],[1], respectively.

Throughout this paper, we let a(n) denote the number of n-permutations avoiding a
pattern p in question, that is, a(n) = |Sn(p)|. Occasionally, we introduce other sequences
of numbers like b(n), but their meaning is defined explicitly in the context. We also let
g.f. stand for “generating function”. Finally, in this paper, we let F (n) denote the n-th
Fibonacci number defined by F (0) = F (1) = 1 and F (n) = F (n−1) +F (n−2) for n > 2.

This paper is organized as follows. In Section 2 we provide a number of general results
on certain posets of arbitrary length used by us to explain 12 connections to the OEIS. In
Sections 3 and 4 we explain connections for POPs of length 4 and 5, respectively. Finally,
in Section 5 we provide some concluding remarks and state a number of directions of
further research.

2 General results

We begin with the following theorem that allows to obtain results for many more POPs
based on already obtained results.
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POP Sequence (beginning with n = 1) OEIS Ref

2
1
4

3 1, 2, 6, 20, 71, 264, 1015, 4002, 16094, . . . A049124 Thm 24

4
2

1
3

1, 2, 6, 21, 80, 322, 1346, 5783, 25372, . . . A257561 Thm 25

2
3

1
4

1, 2, 6, 21, 79, 309, 1237, 5026, 20626, . . . A111279 Thm 26

2
4

1
3

1, 2, 6, 21, 80, 322, 1347, 5798, 25512, . . . A106228 Thm 27

2
1

3
4

1, 2, 6, 21, 79, 311, 1265, 5275, 22431, . . . A033321 Thm 28

3
1
2

4

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, . . . A006318 Thm 30

2
1

3
4 1, 2, 6, 22, 90, 396, 1837, 8864, 44074, . . . A053617 Thm 31

1
3

4
2 1, 2, 6, 22, 90, 395, 1823, 8741, 43193, . . . A165546 Thm 32

Table 3: POPs of length 4 with longest chain of size 3. The enumerations for A049124,
A257561, A111279, A106228, A033321, A006318 are coming from [12], [2], [9], [10], [6],
[24], respectively. Also, A053617 and A165546 appear in [2] and [25], respectively.

Theorem 1. Let p be a POP of size k. Also, let p′ be the POP obtained from p by applying
the complement operation on its labels, that is, by replacing a label x by k+1−x. Moreover,
let p′′ be the POP obtained from p by flipping the poset with respect to a horizontal line.
Then, |Sn(p)| = |Sn(p′)| = |Sn(p′′)| for any n > 0.

Proof. Note that an n-permutation π avoids p if and only if the reverse r(π) avoids p′.
Also, π avoids p if and only if the complement c(π) avoids p′′. The reverse and complement
operations give trivial bijections from Sn to Sn completing our proof.

Theorems 11 and 35 below are immediate corollaries of the next theorem.

Theorem 2. Let p be the POP in Figure 1, where {x1, . . . , xk} = {1, . . . , k} and k > 1.
Then,

a(n) =

{
n! if n < k
(k − 1)!(k − 1)n−k+1 if n > k.
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POP Sequence (beginning with n = 1) OEIS Ref

5

1

2 3 4 1, 2, 6, 24, 60, 150, 399, 1145, . . . A276838 Thm 33

2

1

3 4 5 1, 2, 6, 24, 60, 120, 210, 336, . . . A007531 Thm 34

2

1

43 5 1, 2, 6, 24, 96, 384, 1536, 6144, . . . A084509 Thm 35

2 3 4

1 5

1, 2, 6, 24, 108, 504, 2376, 11232, . . . A094433 Thm 36

2

1

3

4

5 1, 2, 6, 24, 100, 408, 1624, 6336, . . . A094012 Thm 37

4
3

5

2
1

1, 2, 6, 24, 115, 618, 3591, 22088, . . . A128088 Thm 38

Table 4: POPs of length 5. For the highlighted OEIS sequences no interpretation in terms
of permutation patterns was known until this work. Connection to A128088 is via [7, 14].
Note that the a(0) = a(1) = a(2) = 0 in A007531, but the rest is exactly our sequence.

Also, ∑
n>0

a(n)xn =
(k − 1)(k − 1)!xk

1− (k − 1)x
+

k−1∑
i=0

i!xi.

Proof. The base case is straightforward to see, because p cannot occur in such permu-
tations. Now, suppose that n > k. Note that the element n can only be in one of the
x1 − 1 leftmost positions, or in k − x1 rightmost positions, or else p will occur. Thus,
we have k − 1 possibilities to place n. Clearly, for any valid placement of n, we have
a(n − 1) such n-permutations. So, a(n) = (k − 1)a(n − 1) giving the desired recursion
since a(k − 1) = (k − 1)!. The g.f. is straightforward to derive.

x2 x3 x4 xk

x1

Figure 1: The POP in Theorem 2.
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POP Sequence (beginning with n = 1) OEIS

2

1

34

5

1, 2, 6, 24, 110, 540, 2772, 14704, . . . A216879

2

1

3 4

5

1, 2, 6, 24, 114, 600, 3372, 19824, . . . A054872

2
3

4 5

1

1, 2, 6, 24, 112, 568, 3032, 16768, . . . A118376

3

1

4
5

2

1, 2, 6, 24, 116, 632, 3720, 23072, . . . A212198

4
1

5
2

3 1, 2, 6, 24, 114, 598, 3336, 19402, . . . A228907

3

5

2

4

1

1, 2, 6, 24, 118, 672, 4256, 29176, . . . A224295

Table 5: Conjectured connections for POPs of length 5. For the highlighted OEIS se-
quences no interpretation in terms of permutation patterns was known until this work.
Enumeration for A054872 comes from [3]. Also, A212198 comes from [23, 26]. A224295
was obtained using the methods developed in [27].

Theorems 12 and 36 below are immediate corollaries of the next theorem.

Theorem 3. Let p be the POP in Figure 2, where k > 2 (if k = 2 then p is two
independent elements). Then,

a(n) =

{
n! if n < k
2(k − 2) · a(n− 1)− (k − 2)(k − 3) · a(n− 2) if n > k.

Also, ∑
n>0

a(n)xn =
A(x)−B(x) + C(x)

1− 2(k − 2)x+ (k − 2)(k − 3)x2
,

where

A(x) =
k−3∑
i=0

i!xi, B(x) = 2(k − 2)
k−4∑
i=0

i!xi+1, C(x) = (k − 2)(k − 3)
k−5∑
i=0

i!xi+2.
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2 3 k − 1

1 k

Figure 2: The POP in Theorem 3.

Proof. The base case is easy to see. Let n > k, K = {1, 2, . . . , k− 2} and π = π1π2 · · · πn
be a p-avoiding n-permutation. Note that {π1, πn} ∩ K 6= ∅ or else the elements in
{π1, πn}∪K will form an occurrence of p in π. If x ∈ K and π1 = x then we have a(n−1)
such permutations because x cannot be involved in an occurrence of p in π. The same
holds true if πn = x. Thus,

a(n) = 2(k − 2) · a(n− 1)− 2

(
k − 2

2

)
a(n− 2)

where we subtract the number of permutations beginning and ending with an element in
K because they are counted twice by the term 2(k − 2) · a(n − 1). The g.f. can now be
easily derived from the recurrence relation.

Theorems 8, 9, 10, 13, 34, 38 and 37 below are immediate corollaries of the next
theorem.

Theorem 4. Let p be a POP of size k > 1, and the set of labels of isolated (i.e. not
comparable to any other elements) nodes include

I = {1, 2, . . . , i} ∪ {k − s+ i+ 1, k − s+ i+ 2, . . . , k}

for 0 6 i 6 s 6 k. Also, let p1 be the POP obtained from P by removing the ele-
ments corresponding to the labels in I. Finally, let a(n) (resp., b(n)) be the number of
n-permutations avoiding p (resp., p1). Then,

a(n) =

{
n! if n < k

n!
(n−s)! · b(n− s) if n > k.

Proof. The base case is obvious, so assume n > k. Let A, C and B denote the parts of an
n-permutation π formed by the first i elements, the last s− i elements, and the remaining
elements, respectively. If p occurs in π then it induces an occurrence of p1, which cannot
begin in A (there are insufficiently many elements to the left of it) or end in C (there are
insufficiently many elements to the right of it). Thus, π is p-avoiding if and only if B is
p1-avoiding. Since there are no restrictions on the elements in A and C, we can choose
them in

(
n
s

)
ways and then order in s! ways. Independently, we can order the elements of

B in b(n− s) ways, which completes our proof.

Theorem 9 below is an immediate corollary of the next theorem.
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3 2 4

1

k

Figure 3: The POP in Theorem 5.

Theorem 5. Let p be the POP in Figure 3, where k > 3. Then,

a(n) =

{
n! if n < k

n!
(n−k+3)!

· F (n− k + 4) if n > k

where F (n) is the n-th Fibonacci number.

Proof. The case of n < k is trivial, so let n > 3. The first n − k + 3 elements of any

p-avoiding n-permutation π must avoid the POP p1 =
3 2

1
which is equivalent to

avoiding the patterns 231, 312 and 321, simultaneously, and is given by the (n−k+ 4)-th
Fibonacci number (see [20, Table 6.1]). There are no restrictions on the last k−3 element
of π which can be selected in

(
n

k−3

)
ways and ordered in (k − 3)! ways, which complete

our proof. Alternatively, we can use Theorem 4 for p and p1 in our theorem to obtain the
desired result.

x2 x3 xk−s

x1

y1 y2 ys

Figure 4: The POP in Theorem 6.

Theorem 6. Let p be the POP in Figure 4, where k > 1, 0 6 s 6 k, {x1, x2, . . . , xk−s} =
{t, t+ 1, . . . , t+ k − s− 1} for some t, 1 6 t 6 s+ 1, and {y1, y2, . . . , yk} = {1, 2, . . . , t−
1} ∪ {t+ k − s, t+ k − s+ 1, . . . , k}. Then,

a(n) =

{
n! if n < k
n!(k−s−2)!

(n−s)! (k − s− 1)n−k+s+2 if n > k.

Proof. This is an immediate corollary of Theorems 2 and 4.

An element πi, 1 6 i 6 n, in a permutation π1 · · · πn is a left-to-right maximum if
πj < πi for 1 6 j < i.
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k 2 3

1

k − 1

Figure 5: The POP in Theorem 7.

Theorem 7. Let p be the POP in Figure 5, where k > 3. Then, p-avoiding n-permutations
are in one-to-one correspondence with n-permutations such that for each cycle c the small-
est integer interval containing all elements of c has at most k − 1 elements.

Proof. We use a standard bijection ϕ from the cyclic structure of a permutation to one-
line notation as follows: arrange all cycles in canonical form, where the largest element
inside a cycle is written first, and the cycles are ordered in increasing order of their
maximal elements from left-to-right. Erase the parentheses, and observe that the maximal
elements become the left-to-right maxima in the obtained permutation. For example,
ϕ((163)(7)(82)(45)) = 54631782.

Suppose π is an n-permutation satisfying the condition on its cycles and xi and xj,
i < j, are two left-to-right maxima following each other in ϕ(π) = x1 · · ·xn. The condition
on π implies that in ϕ(π) the difference between any two elements in {xi, xi+1, . . . , xj−1}
is no more than k − 2. The same is true for the set {x`, x`+1, . . . , xn}, where x` is the
largest left-to-right maximum. Let σ = σ1 · · ·σn be the inverse of ϕ(π). We claim that σ
avoids p.

Indeed, suppose that σ contains a subsequence σi1 · · ·σik , 1 6 i1 < · · · < ik 6 n, which
is an occurrence of p. But then, in ϕ(π), we have the element ik to the left of the element
i1, and ik − i1 > k − 2. If there are no element z > ik between ik and i1 in ϕ(π), i1 and
ik must be in the same cycle in π, and we obtain a contradiction. On the other hand, if
there is z > ik between ik and i1 in ϕ(π), consider such a z closest to i1. Then, this z and
i1 are in the same cycle in π, and z − i1 > k − 1, which is a contradiction. So, σ indeed
avoids p.

Conversely, consider a cycle in π with a maximum element ik and an element i1 such
that ik − i1 > k − 2. Then, in σ, we have the elements in positions i1 < ik forming
the pattern 21, and these elements are part of an occurrence of p. This completes our
proof.

3 POPs of length 4

3.1 Results coming from our general theorems

The next theorem gives a new enumerative result on permutations avoiding simultaneously
12 patterns of length 4 in which the first element is larger than the second one.
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Theorem 8. For the POP p =
2

1

3 4
we have

a(n) =

{
n! if n = 0, 1, 2, 3
n(n− 1) if n > 4.

Also, ∑
n>0

a(n)xn =
1− 2x+ 2x2 + 2x3 − x4

(1− x)3
.

This is the sequence A103505 in [28].

Proof. This is an immediate corollary of Theorem 4, or Theorem 6, with k = 4, s = 2 and

b(n) = 1 for n > 0 because only increasing permutations avoid the pattern p1 =
2
1 .The

g.f. can now be easily derived from the recurrence relation.

The next theorem gives a new enumerative result on permutations avoiding simulta-
neously 12 patterns of length 4 in which the first element is larger than the third one.

Theorem 9. For the POP p =
3

1

2 4
we have

a(n) =

{
n! if n < 4
n · F (n) if n > 4

Also, ∑
n>0

a(n)xn =
x4 + 3x3 − x2 − x+ 1

(1− x− x2)2
.

This is essentially the sequence A045925 in [28] (a(0) = 0 in A045925).

Proof. This is an immediate corollary of Theorem 5, with k = 4. The g.f. is not difficult
to derive using

The p-avoiding n-permutations in the next theorem are equinumerous with S2(1, n)
in [8] corresponding to a POP whose poset has the same shape as p, but the patterns in
question are vincular.

Theorem 10. For the POP p =
2

1
3 4

we have a(0) = a(1) = 1 and for n > 1,

a(n) = n2n−2. Also, ∑
n>0

a(n)xn =
1− 3x+ 2x2 + 2x3

(1− 2x)2
.

This is the sequence A129952 in [28]. Also, this is essentially the sequence A057711 in
[28] (a(0) = 0 in A057711).
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Proof. This is an immediate corollary of Theorem 4 with k = 4, s = 1 and p1 =
2

1
3

be-

cause p1-avoiding n-permutations are precisely n-permutations avoiding the patterns 312
and 321, simultaneously, and their number is given by 2n−1 (by applying the complement
to the patterns 123 and 132 in [20, Table 6.1]).

The next theorem gives a new enumerative result on permutations avoiding simulta-
neously the patterns in {3214, 3124, 4123, 4213, 4321, 4231}.

Theorem 11. For the POP p =
2

1

43
we have

a(n) =

{
n! if n < 4
2 · 3n−2 if n > 4.

Also, ∑
n>0

a(n)xn =
1− 2x− x2

1− 3x
.

This is the sequence A025192 in [28].

Proof. This is an immediate corollary of Theorem 2.

Theorem 12. For the POP p =
2
1

3
4 we have

a(n) =

{
n! if n < 4
4a(n− 1)− 2a(n− 2) if n > 4.

Also, ∑
n>0

a(n)xn =
1− 3x

1− 4x+ 2x2
.

This is the sequence A006012 in [28].

Proof. This is an immediate corollary of Theorem 3.

Theorem 13. For the POP p =
2
1
3

4
we have a(n) =

(
2n−2
n−1

)
for n > 1. This is the

sequence A000984 in [28].

Proof. This is an immediate corollary of Theorem 4 because the number of 213-avoiding
n-permutations is well-known to be given by the Catalan numbers 1

n+1

(
2n
n

)
(e.g. see [20]).

Alternatively, note that p-avoiding permutations can be obtained from the permutations
enumerated in [12, Cor 5.1] by applying reverse, then complement, and then inverse.
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3.2 POPs of length 4 with longest chain of size 2

The next theorem gives a new enumerative result on permutations avoiding simultaneously
12 patterns of length 4 in which the first element is larger than the last one.

Theorem 14. For the POP p =
4

1

2 3
we have a(0) = a(1) = 1, a(2) = 2, a(3) = 6,

and for n > 4, a(n) = a(n− 1) + a(n− 2) + 3a(n− 3) + a(n− 4). Also,

A(x) :=
∑
n>0

a(n)xn =
1

1− x− x2 − 3x3 − x4
.

This is the sequence A214663 in [28]. Also, this is essentially the sequence A232164 in
[28] (a(0) = 0 in A232164, and a(n) is a(n− 1) in our sequence).

Proof. We will derive the g.f. A(x) from which it is straightforward to check the recurrence
relation for a(n). We think of generating all p-avoiding n-permutations by inserting n in
p-avoiding (n− 1)-permutations. Note that n in such a permutation π = π1π2 · · · πn can
only be in positions n − 2, n − 1 or n (otherwise, we would have an occurrence of p
involving n).Thus, we have three cases to consider.

Case 1. If πn = n then we clearly have a(n− 1) such permutations.

Case 2. If πn−1 = n then π may contain p involving πn. This happens when π ends with
xynz where x > z. Indeed, there cannot be any other elements between x and z other
than n and y, because otherwise before inserting n, we would have at least two elements
between x and z, which contradicts us starting with a p-avoiding (n− 1)-permutation.

Letting b(n) be the number of p-avoiding n-permutations with the element in position
n−2 larger than the element in position n, we see that in Case 2 we have a(n−1)−b(n−1)
p-avoiding n-permutations.

Case 3. If πn−2 = n then two subcases are possible when inserting n leads to an occur-
rence of p.

(a) πn is involved in an occurrence of p. The number of such permutations is given by
b(n− 1) because removing n from π we have a p-avoiding (n− 1)-permutation with
the element in position n− 2 larger than the element in position n.

(b) πn is not involved in an occurrence of p, but πn−1 is involved. In this case π must
end with uxnyz, where z > y, z > u (otherwise πn is also involved in an occurrence
of p which is impossible in this case), u > y, so uxny is the only occurrence of p
(otherwise we would have an occurrence of p before inserting n). This implies that
z = n − 1 because otherwise n − 1 with z would be involved in an occurrence of p
since y cannot be n− 1. So, the element πn = n− 1 can be removed and the rest is
counted like in case (a) by b(n−2) (after removing πn, we can think of inserting the
largest element in a p-avoiding (n− 2)-permutation in the next to last position).
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Summarizing (a) and (b) in Case 3 we have a(n − 1) − b(n − 1) − b(n − 2) p-avoiding
n-permutations.

From Cases 1–3 it follows that for n > 3

a(n) = 3a(n− 1)− 2b(n− 1)− b(n− 2) (1)

with initial conditions a(0) = a(1) = 1, a(2) = 2 and b(0) = b(1) = b(2) = 0. Multiplying
both parts of (1) by xn and summing over all n > 3 we have

(1− 3x)A(x) + (x2 + 2x)B(x) = 1− 2x− x2 (2)

where B(x) is the g.f. for the sequence b(n).
Next, we derive a recurrence relation for b(n). Recall that b(n) counts p-avoiding n-

permutations ending with xyz where x > z. Note that no element to the left of x is larger
than z. We consider three subcases depending on the relative position of y with respect
to x and z.

(i) y > x, in which case we must have y = n, x = n − 1 and z = n − 2. Clearly there
are a(n− 3) such permutations because appending the largest element to the right
of a p-avoiding (n− 3)-permutation cannot introduce an occurrence of p.

(ii) x > y > z, in which case we must have x = n, y = n− 1 and z = n− 2. Similarly
to (i) we have a(n− 3) permutations in this case.

(iii) y < z, in which case we must have x = n andz = n − 1. z can be removed from π
and the rest of the counting problem is the same as inserting the largest element in
position n − 2 in a p-avoiding (n − 1)-permutation, which is considered in Case 2.
Thus, in this case we have a(n− 2)− b(n− 2) such permutations.

Summarizing (i)–(iii) we have the following recurrence relation for n > 3:

b(n) = 2a(n− 3) + a(n− 2)− b(n− 2) (3)

with initial conditions a(0) = a(1) = 1, a(2) = 2 and b(0) = b(1) = b(2) = 0. Multiplying
both parts of (3) by xn and summing over all n > 3 we have

(2x3 + x2)A(x)− (x2 + 1)B(x) = x2 (4)

Solving (2) and (4) for A(x) and B(x) we get the desired formula for A(x).

The next theorem gives a new enumerative result on permutations avoiding simulta-
neously the patterns in {2134, 3124, 4123, 3214, 4213, 4312}.

Theorem 15. For the POP p =
2
1

3
4 we have a(0) = 1, and for n > 1, a(n) =

2a(n− 1) + 2n−1 − 2, so that

a(n) = (n− 2)2n−1 + 2.

the electronic journal of combinatorics 26(3) (2019), #P3.26 14



Also, ∑
n>0

a(n)xn =
1− 4x+ 5x2

(1− x)(1− 2x)2
.

This is the sequence A048495 in [28].

Proof. The initial condition is easy to check, so assume that n > 1. We next derive the
recurrence relation for a(n).

Consider the element 1 in a p-avoiding n-permutation. If 1 is in the first or last
positions, then clearly it cannot contribute to an occurrence of p, so these cases give
2a(n − 1) possibilities. Now, if 1 is in position i, 2 6 i 6 n − 1, then the elements to
the left of 1 must be in increasing order to avoid p involving the element 1. Similarly, all
elements to the right of 1 must be in decreasing order to avoid p involving the element
1.Thus, the number of p-avoiding n-permutations in this case is given by

(
n−1
i−1

)
, which

is the number of ways to choose the elements to the left of 1. Summing up over all i
gives 2n−1 − 2 possibilities giving the recurrence relation. It is straightforward to prove
by induction that the desired formula satisfies the recurrence relation. The g.f. is also
easy to derive.

The next theorem gives a new enumerative result on permutations avoiding simulta-
neously the patterns in {2314, 3214, 3124, 4213, 4123, 4132}.

Theorem 16. For the POP p =
3
1

2
4 we have a(0) = a(1) = 1, a(2) = 2, and for n > 3,

a(n) = 2a(n− 1) + 2a(n− 2) + 2a(n− 3), so that for n > 1,

a(n) =
n−1∑
j=0

b(n−j−1)/2c∑
i=0

(
n− j − i− 1

i

)(
j

n− j − i− 1

)
2j. (5)

Also, ∑
n>0

a(n)xn =
1− x− 2x2 − 2x3

1− 2x− 2x2 − 2x3
.

This is the sequence A077835 in [28].

Proof. The initial conditions are easy to check along with a(3) = 6 satisfying the recursion,
so assume that n > 4.

Note that the class of p-avoiding permutations is closed under the operation of reverse,
so that we can count p-avoiding n-permutations in which 1 is to the right of n, and then
multiply the result by 2. Let π = π1 · · · πn be a p-avoiding n-permutation. We claim that
πn = 1 or πn−1 = 1. Indeed, otherwise n1πn−1πn is an occurrence of p. There are two
cases.

Case 1. If πn = 1 then it does not affect the rest of π, so we have a(n− 1) possibilities.
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Case 2. Let πn−1 = 1. If πn = 2 then the elements 1 and 2 do not affect the rest of the
permutation and we have a(n − 2) such permutations. Now assume that πn > 2. If 2 is
to the right of n then n21πn is an occurrence of p. Thus, 2 is to the left of n.

If π1 6= 2 and π2 6= 2 then π1π22n is an occurrence of p. If π1 = 2 then πn must be 3,
as otherwise 231πn is an occurrence of p. But then, the elements 2, 1 and 3 do not affect
the rest of π, so we have a(n − 3) such permutations. Finally, π2 6= 2 because otherwise
π121πn is an occurrence of p.

The g.f. is now easy to derive. Also, (5) is given by [28, A077835].

Remark 17. The combinatorial interpretation in [28, A077835] is “a(n) is the number of
ways two opposing basketball teams could score a combined total of n points (counting
one point free throws, two point field goals, and three point field goals) considering the
order of the scoring as important.” Based on the proof of Theorem 16 we can easily

encode these objects by (n + 1)-permutations avoiding the POP p =
3
1

2
4 as follows.

Let a permutation π = π1 · · · πn+1 be p-avoiding and n > 1. If πn+1 = 1 (resp., π1 = 1)
then team A (resp., B) scored one at the beginning of the game. If πnπn+1 = 12 (resp.,
π1π2 = 21) then team A (resp., B) scored two at the beginning of the game. If πnπn+1 = 13
(resp., π1π2 = 31) then team A (resp., B) scored three at the beginning of the game. The
rest is done by induction.

The next theorem gives a new enumerative result on permutations avoiding simulta-
neously the patterns in {2341, 3241, 3142, 4231, 4132, 4123}.

Theorem 18. For the POP p =
4
1

2
3 we have that a(0) = a(1) = 1, a(2) = 2, a(3) = 6,

a(4) = 18, a(5) = 50, and for n > 6,

a(n) = 4a(n− 1)− 5a(n− 2) + 4a(n− 6). (6)

Also, ∑
n>0

a(n)xn =
(1− x)3

1− 4x+ 5x2 − 4x3
.

This is the sequence A271897 in [28].

Proof. We first prove that a(n) satisfies, for n > 4, the recursion

a(n) = a(n− 1) +
n−2∑
i=1

(i2a(n− i− 2) + i · a(n− i− 1)) + (n− 1) (7)

with the initial conditions a(0) = a(1) = 1, a(2) = 2 and a(3) = 6.
The initial conditions are easy to see. To derive (7) for n > 4, we consider three cases

depending on the position of the element n in a p-avoiding permutation π = π1 · · · πn.

Case 1. π1 = n. Then π2πn · · · πn−1 must be in decreasing order (otherwise π1 and
πn would be involved in an occurrence of p). There are no extra restrictions, so we have
n− 1 possibilities in this case, which is the number of ways to pick πn.

the electronic journal of combinatorics 26(3) (2019), #P3.26 16



Case 2. πn = n. In this case n cannot be involved in an occurrence of p, so we have
a(n− 1) possibilities.

Case 3. πi+1 = n, where 1 6 i 6 n − 2. Note that in order to avoid p (keeping in
mind that πiπi+1 can be two middle elements in an occurrence of p), all elements to the
right of n must be larger than each element, if any, in positions 1, 2, . . . , i− 1. Also, once
the elements to the right of n are known, there are n − i − 1 ways to order them, since
πi+2πi+2 · · · πn−1 must be in decreasing order. We have two subcases.

(1) πi is less than any element to the right of n. Since the last n− i elements are then
the largest in π, they do not affect the rest of π. So there are a(i) permutations of
the smallest elements, and n− i− 1 ways to arrange the elements to the right of n.
Thus we have (n− i− 1)a(i) possibilities, in this case.

(2) πi ∈ {i+ 1, i+ 2, . . . , n− 1}. In this case, πi does not affect whatever is to the right
of n, the last n− i+ 1 elements are the largest elements, and they do not affect the
rest of π. Thus, we have n− i− 1 ways to choose πi, then n− i− 1 ways to order
elements to the right of n, and a(i− 1) ways to pick a permutation of the smallest
elements. Thus, we have (n− i− 1)2a(i− 1) possibilities in total here.

Summing over all i, we have

n−2∑
i=1

((n− i− 1)2a(i− 1) + (n− i− 1)a(i)) =
n−2∑
i=1

(i2a(n− i− 2) + i · a(n− i− 1))

possibilities in Case 3. Finally, adding up Cases 1–3, we get (7).
The g.f. can now be obtained by multiplying both sides of (7) by xn and summing over

all n > 4, and using
∑

i>0 ix
i = x

(1−x)2 and
∑

i>0 i
2xi = x(1+x)

(1−x)3 . Finally, our g.f. matches

the g.f. in [28, A271897] which gives the known recurrence relation (6) for a(n).

Note that p-avoiding n-permutations in the next theorem are equinumerous with n-
permutations avoiding eight patterns in [1]. However, our permutations cannot be mapped
to the permutations in [1] via trivial bijection, because in our case the monotone pattern
4321 is forbidden, while no monotone pattern is forbidden in [1].

Theorem 19. For the POP p =
2

1
4 3

we have that

∑
n>0

a(n)xn =
(1− x)2

1− 3x+ 2x2 − 2x3
.

This is the sequence A111281 in [28].

Proof. The initial conditions are easy to see. Let n > 4. There are only three possible
places for n in a p-avoiding permutation π = π1 · · · πn.
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Case 1. If πn = n then clearly we have a(n− 1) possibilities.

Case 2. If πn−1 = n then we have a(n− 1)− b(n− 1) possibilities, where b(n) counts the
number of p-avoiding n-permutations that end with xyz and x > y and x > z.

Case 3. If πn−2 = n then we have a(n− 1)− c(n− 1) possibilities, where c(n) counts the
number of p-avoiding n-permutations that end with xyzx+, where x > y, x > z and x+

denotes an element larger than x (note that we are forced to have πn > x to avoid p).
Summarizing Cases 1–3, we obtain a(n) = 3a(n−1)− b(n−1)− c(n−1). Multiplying

both sides of this relation by xn, then summing over all n > 4 and keeping in mind that
a(0) = a(1) = 1, a(2) = 2, a(3) = 6, b(0) = b(1) = b(2) = c(0) = c(1) = c(2) = c(3) = 0
and b(3) = 2 (only 312 and 321 are such permutations), we obtain

(1− 3x)A(x) + xB(x) + xC(x) = 1− 2x− x2 (8)

where A(x), B(x), C(x) are the g.f.s for a(n), b(n), c(n), respectively.
Next we derive a recurrence relation for b(n). Note that in n-permutations counted

by b(n), πn−1 6= n and πn 6= n. Thus, we must have x = n (x is used in the definition of
b(n)), and this case is the same as Case 3 above, so we have b(n) = a(n− 1)− c(n− 1).
Multiplying both sides of this relation by xn and summing over all n > 4, we obtain

xA(x)−B(x)− xC(x) = x+ x2 (9)

Finally, we derive a recurrence relation for c(n). Note that we must have x+ = n and
x = n − 1. We can remove n (it cannot contribute an occurrence of p), and the rest is
exactly Case 3 above with the indices shifted by 1. That is, c(n) = a(n − 2) − c(n − 2).
Multiplying both sides of this relation by xn and summing over all n > 4, we obtain

x2A(x)− (1 + x2)C(x) = x2 + x3 (10)

Solving the system of linear equations (8), (9) and (10), we obtain A(x).

Theorem 20. For the POP p =
3

1
4 2

we have a(0) = a(1) = 1, and for n > 2,

a(n) = 2(a(n− 1) + a(n− 2)). Also,∑
n>0

a(n)xn =
1− x− 2x2

1− 2x− 2x2
.

This is essentially the sequence A002605 in [28] (a(0) = 0 there).

Proof. We think of generating all p-avoiding n-permutations from p-avoiding (n − 1)-
permutations by inserting the element n. n can only be in positions n− 2, n− 1 and n.

Case 1. n is in position n. We clearly have a(n− 1) such permutations.

Case 2. n is in position n− 1. We clearly have a(n− 1) such permutations.
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Case 3. n is in position n − 2. We clearly have a(n − 1) − b(n − 1) such permutations,
where b(n− 1) counts p-avoiding (n− 1)-permutations ending with xyz, where x is larger
than y and z. We need to subtract such permutations because when inserting n in position
n− 2 in them we will get the forbidden pattern p. We do not need to subtract any other
permutations because if p occurs as xnyz, and x is not next to n, then we would have an
occurrence of p before inserting n.

Summarizing Cases 1–3, we have

a(n) = 3a(n− 1)− b(n− 1). (11)

We next derive a recurrence relation for b(n). Note that we must have x = n (x appears in
the definition of b(n)), or else nxyz is an occurrence of p, which is impossible. But then,
we are back to Case 3 above, since all such permutations can be obtained by inserting the
largest element n in position n− 2 in a p-avoiding (n− 1)-permutation. So, we have

b(n) = a(n− 1)− b(n− 1). (12)

Subtracting (12) from (11), we obtain

b(n) = a(n)− 2a(n− 1). (13)

Using (13) in (11) we get the desired recurrence. The g.f. is now straightforward to
derive.

Note that p-avoiding n-permutations in the next theorem are equinumerous with n-
permutations avoiding simultaneously the patterns in {1432, 2431, 3412, 3421, 4132, 4231,
4312, 4321} appearing in [1]. However, our permutations cannot be mapped to the permu-
tations in [1] via trivial bijection, because in our case no monotone pattern is forbidden,
while the pattern 4321 is forbidden in [1].

Theorem 21. For the POP p =
1

2
4 3

we have a(0) = a(1) = 1, and for n > 2,

a(n) = 3a(n− 1)− a(n− 2). Also,∑
n>0

a(n)xn =
1− 2x+ x3

1− 3x+ x2
.

This is the sequence A111282 in [28].

Proof. One can easily check that a(n) = n! for 1 6 n 6 3 and the recursion is satisfied,
so assume that n > 4. We consider possible places for the element n in a p-avoiding
permutation π = π1 · · · πn. There are only three possibilities.

Case 1. π1 = n. In this case we clearly have a(n− 1) possibilities.

Case 2. πn = n. In this case we clearly have a(n− 1) possibilities.

the electronic journal of combinatorics 26(3) (2019), #P3.26 19



Case 3. πn−1 = n. In this case, we have a(n−1)−b(n−1) possibilities where b(n) counts
the number of p-avoiding n-permutations that end with xyz, where x < y and z < y,
because in this case inserting n in position n− 1 will create an occurrence of p.

Summarizing Cases 1–3, we have

a(n) = 3a(n− 1)− b(n− 1). (14)

We next derive a recursion for b(n). Because we deal with p-avoiding permutations, there
are three possibilities for a position of the element n, as mentioned above.

(i) If a permutation counted by b(n) begins with n, then clearly we have b(n − 1)
possibilities.

(ii) No permutation ending with n can be counted by b(n).

(iii) Finally, any permutation with n in position n − 1 will be counted by b(n) since
n > 4, but the number of these permutations is given by Case 3 above, and it is
a(n− 1)− b(n− 1).

Summarizing (i)–(iii), we have b(n) = a(n−1), which together with (14) gives the desired
result.

Note that, according to [28, A111277], p-avoiding n-permutations in the next the-
orem are equinumerous with n-permutations avoiding simultaneously the patterns in
{2413, 4213, 2431, 4231, 4321} and with n-permutations avoiding simultaneously the pat-
terns in {3142, 3412, 3421, 4312, 4321}. However, our permutations cannot be mapped to
any of these permutations via trivial bijection, because in our case no monotone pattern
is forbidden, while the pattern 4321 is forbidden in both of the other cases.

Theorem 22. For the POP p =
2
1

3
4 we have a(0) = a(1) = 1 and, for n > 2,

a(n) = 4a(n− 1)− 3a(n− 2) + 1, so that

a(n) =
3n − 2n+ 3

4
. (15)

Also, ∑
n>0

a(n)xn =
(1− 2x)2

(1− 3x)(1− x)2
.

This is the sequence A111277 in [28].

Proof. The initial values are easy to see, so let n > 2. Clearly, to avoid p is the same as
to avoid simultaneously the patterns in {4312} ∪ A, where A = {4213, 3214, 4123, 3124}.
We claim that

a(n) = 4a(n− 1)− 2a(n− 2)− (a(n− 2)− 1). (16)

Observe that to avoid the patterns in A, an n-permutation must begin or end with 1 or 2.
This explains the term 4a(n− 1) in (16) coming from generating all such n-permutations
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from p-avoiding (n−1)-permutations. However, the n-permutations beginning and ending
with 1 and 2 are counted twice, which explains the term −2a(n−2) in (16). Next, observe
that some of n-permutations ending with 2 and counted by 4a(n−1) contain occurrence(s)
of the pattern 4312, and they need to be subtracted (none of these permutations was sub-
tracted by −2a(n−2) because the element 1 cannot be leftmost). Call these permutations
“bad” permutations, and denote an occurrence of 4312 by xy12 (because the elements 1
and 2 must be involved in any occurrence of 4312).

To see that the number of bad permutations is a(n− 2)− 1, and thus to complete the
proof of (16), note that the element 1 must be next to the (rightmost) element 2 in any
bad permutation. Indeed, if an element z is between 1 and 2, then

• xy1z is an occurrence of the pattern 4312 if z < y, and

• xy1z is an occurrence of the pattern 4213 or 3214 if z > y,

which is impossible, because the (n−1)-permutation obtained by removing the element 2
must avoid all 5 forbidden patterns. But any (n−2)-permutation, except for the increasing
permutation, that avoid the 5 patterns with 12 appended to the right will result in a bad
permutation, so the number of bad n-permutations is indeed a(n − 2) − 1, and (16) is
proved.

Note that the formula (15) given in [28, A111277] satisfies our recurrence relation.
Also, the g.f. is straightforward to derive.

The next theorem gives a new enumerative result on permutations avoiding simulta-
neously the patterns in {4132, 4213, 3214, 4123, 3124}.

Theorem 23. For the POP p =
3
1

2
4 we have a(0) = a(1) = 1 and, for n > 2,

a(n) = 4a(n− 1)− 3a(n− 2) + a(n− 3), so that, for n > 1,

a(n) =
n−1∑
i=0

(
n+ 2i− 1

3i

)
. (17)

Also, ∑
n>0

a(n)xn =
1− 3x+ x2

1− 4x+ 3x2 − x3
.

This is the sequence A052544 in [28].

Proof. The initial conditions are easy to check, so assume that n > 2. Clearly, to
avoid p is the same as to avoid simultaneously the patterns in {4132} ∪ A, where A =
{4213, 3214, 4123, 3124}. We begin with proving that

a(n) = 4a(n− 1)− 2a(n− 2)− (a(n− 1)− (a(n− 2) +
n−3∑
i=0

a(n− 2− i))) (18)
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Observe that to avoid the patterns in A, an n-permutation must begin or end with 1 or 2.
This explains the term 4a(n− 1) in (18) coming from generating all such n-permutations
from p-avoiding (n−1)-permutations. However, the n-permutations beginning and ending
with the elements in {1, 2} are counted twice, which explains the term −2a(n−2) in (18).
Next, observe that some of n-permutations ending with 2 and counted by 4a(n − 1)
contain occurrence(s) of the pattern 4132, and they need to be subtracted (none of these
permutations was subtracted by −2a(n − 2) because the element 1 cannot be leftmost).
Call these permutations “bad” permutation.

To count bad permutations, we count n-permutations ending with 2 which cannot be
bad, namely, which avoid all 5 patterns, and then subtract them from all n-permutations
in question ending with 2. All such non-bad n-permutations are given by considering two
cases:

(i) there are no elements between 1 and 2, that is an n-permutation ends with 12. We
have a(n− 2) such permutations.

(ii) there is at least one element between 1 and 2, and every element to the left of 1 is
less than any element to the right of 1 (except for the element 2). In this case, the
elements to the left of 1 must be in increasing order, or else, we will get an occurrence
of the pattern 3214 involving two elements to the left of 1, 1 itself, and an element to
the right of 1. Between the elements 1 and 2 we can have any permutation avoiding
the 5 patterns. Thus, we have

∑n−3
i=0 a(n− 2− i) such permutations.

So, the number of bad permutations is a(n− 1)− (a(n− 2) +
∑n−3

i=0 a(n− 2− i)), which
completes the proof of (18).

From (18) we have a(n) = 3a(n−1)−a(n−2)+
∑n−3

i=0 a(n−2−i). Taking a(n)−a(n−1)
leads to the desired recursion a(n) = 4a(n− 1)− 3a(n− 2) + a(n− 3) that is presented
in [28, A052544]. The g.f. can now be easily derived, and the formula (17) presented in
[28, A052544] can also be checked by Mathematica to satisfy the recursion.

3.3 POPs of length 4 with longest chain of size 3

Theorem 24. For the POP p =
2
1
4

3
we have, for n > 1,

a(n) =
n−1∑
k=0

1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
.

This is the sequence A049124 in [28].

Proof. To avoid p is the same as avoiding the patterns 3214, 3124, 2134, and 2143, simul-
taneously. Applying inverse and then complement to the these permutations, we obtain
permutations enumerated in [12, Thm 6.2].
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Theorem 25. For the POP p =
4
2

1
3 we have for a(n) the asymptotic growth of

(3−
√

5)(7 + 3
√

5 + 3
√

22 + 10
√

5)

4
.

The g.f. A(x) =
∑

n>0 a(n)xn satisfies

(2x2 + 8x− 1)A4(x) + (x3 + 4x2 − 46x+ 5)A3(x) + (3x3 − 21x2 + 94x− 9)A2(x)+

(x3 + 12x2 − 82x+ 7)A(x) + 3x2 + 26x− 2 = 0.

This is the sequence A257561 in [28].

Proof. To avoid p is the same as to avoid the patterns 4231, 4312, and 4321, and these are
precisely the patterns in [2, Thm 3.1] and [28, A257561], from which the results follow.

Theorem 26. For the POP p =
2
3

1
4 we have

∑
n>0

a(n)xn =
1− 5x+ (1 + x)

√
1− 4x

1− 5x+ (1− x)
√

1− 4x
.

This is the sequence A111279 in [28].

Proof. Clearly, avoiding p is equivalent to avoiding the patterns 4132, 4231, and 4123,
simultaneously. Applying the inverse and reverse operations to these patterns gives the
class Π3 in [9], which was enumerated there.

Theorem 27. For the POP p =
2
4

1
3 we have, for n > 1,

a(n) =
1

n

n−1∑
k=0

(
2n− 2k − 2

n− k − 1

)(
n+ k − 1

n− 1

)
.

Also, A(x) =
∑

n>0 a(n)xn satisfies

A(x) = 1 +
xA(x)

1− xA2(x)
.

This is the sequence A106228 in [28].

Proof. Clearly, avoiding p is equivalent to avoiding the patterns 4213, 4123, and 4132,
simultaneously, and these are precisely the patterns in [28, A106228]. The formula for
a(n), and the relation for A(x), can be found in the OEIS. Note that the relation is
coming from [10] as the triple No. 242 in Table 1 there is the reverse and complement of
our patterns.
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Theorem 28. For the POP p =
2
1

3
4 we have, a(0) = a(1) = 1, a(2) = 2, and for

n > 3,

a(n) =
(13n− 5)a(n− 1)− (16n− 23)a(n− 2) + 5(n− 2)a(n− 3)

2(n+ 1)
.

Also, ∑
n>0

a(n)xn =
2

1 + x+
√

(1− x)(1− 5x)
.

This is the sequence A033321 in [28].

Proof. Clearly, avoiding p is equivalent to avoiding the patterns 2143, 3142 and 3241,
simultaneously, which is reverse complement of the patterns considered in [6], where the
g.f. is given. The recurrence relation for a(n) is given in [28, A033321].

Remark 29. Note that, by [28, A033321], the avoidance of the pattern
2
1

3
4 in Theorem

28 is Wilf-equivalent to the avoidance of the following three triples of patterns not trivially
equivalent to each other {2431, 4231, 4321}, {2413, 3142, 2143}, and {2143, 3142, 4132}.

The n-th large Schröder number is defined by the following recurrence relation:

Sn = Sn−1 +
n−1∑
i=0

SiSn−1−i

where S0 = 1.

Theorem 30. For the POP p =
3

1
2

4
we have that a(0) = 0, and for n > 1, a(n) = Sn,

the (n− 1)-th large Schröder number, so that

∑
n>0

a(n)xn =
3− x−

√
1− 6x+ x2

2
.

This is the sequence A006318 in [28].

Proof. Avoding p is equivalent to avoiding 2134 and 2143. The result follows from [24]
by applying the reverse and complement to these patterns.

The enumeration for the sequence in the next theorem is unknown, but its g.f. is
conjectured to be non-D-finite [2].

Theorem 31. For the POP p = 2
1

3
4

we have that a(n) is given by the sequence

A053617 in [28].
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Proof. Clearly, to avoid p is the same as to avoid the patterns 4231 and 4321, which is
the reverse of the patterns in [28, A053617].

The enumeration for the sequence in the next theorem is unknown. The sequence
appears in [25] as avoidance of the patterns 2143 and 2413, and the patterns corresponding
to our p are obtained from these by applying inverse.

Theorem 32. For the POP p = 1
3

4
2

we have that a(n) is given by the sequence

A165546 in [28].

Proof. To avoid p is the same as to avoid the patterns 2143 and 3142, simultaneously.
The complement of these is the patterns in [28, A165546].

4 POPs of length 5

The next theorem gives a new enumerative result on permutations avoiding simultaneously
60 patterns of length 5 in which the first element is larger than the last one.

Theorem 33. For the POP p =
5

1

2 3 4
we have

∑
n>0

a(n)xn =
1− x2

1− x− 2x2 − 2x3 − 12x4 − 8x5 + 2x6 + 5x7 + x8
.

This is the sequence A276838 in [28].

Proof. The case k = 5 in Theorem 7 gives a one-to-one correspondence between p-avoiding
n-permutations and the objects appearing in [28, A276838] with a known g.f..

The next theorem gives a new enumerative result on permutations avoiding simul-
taneously 60 patterns of length 5 in which the first element is larger than the second
one.

Theorem 34. For the POP p =
2

1

3 4 5
we have

a(n) =

{
n! if n < 5
n(n− 1)(n− 2) if n > 5.

Also, ∑
n>0

a(n)xn =
1− 3x+ 4x2 + 9x4 − 7x5 + 2x6

(1− x)4
.

This is essentially A007531 in [28] (a(0) = a(1) = a(2) = 0 in A007531).
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Proof. This is an immediate corollary of Theorem 4, or Theorem 6, with k = 5, s = 3
and b(n) = 1 for n > 0 because only increasing permutations avoid the pattern p1 =

2
1. The g.f. can now be easily derived from the recurrence relation.

The next theorem gives a new enumerative result on permutations avoiding simulta-
neously 24 patterns of length 5 in which the first element is larger than any other element.

Theorem 35. For the POP p =
2

1

43 5
we have

a(n) =

{
n! if n < 5
6 · 4n−3 if n > 5.

Also, ∑
n>0

a(n)xn =
1− 3x− 2x2 − 2x3

1− 4x
.

This is the sequence A084509 in [28].

Proof. This is an immediate corollary of Theorem 2.

The next theorem gives a new enumerative result on permutations avoiding simulta-
neously 12 patterns of length 5 in which the first and the last elements are larger than
any other element.

Theorem 36. For the POP p =
2 3 4

1 5
we have

a(n) =

{
n! if n < 5
6a(n− 1)− 6a(n− 2) if n > 5.

Also, ∑
n>0

a(n)xn =
1− 5x+ 2x2

1− 6x+ 6x2
.

This is the sequence A094433 in [28].

Proof. This is an immediate corollary of Theorem 3.

The next theorem gives a new enumerative result on permutations avoiding simulta-
neously 20 patterns of length 5.

Theorem 37. For the POP p =
2

1

3

4

5

we have

A(x) :=
∑
n>0

a(n)xn =
1− 7x+ 14x2 − 6x3 + 4x4

(1− 4x+ 2x2)2
.

This is the sequence A094012 in [28].
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Proof. From Theorem 4,

a(n) =

{
n! if n < 5
n · b(n− 1) if n > 5

where b(n), along with its g.f. B(x) :=
∑

n>0 b(n)xn = 1−3x
1−4x+2x2 , is given by Theorem 12.

Thus,
A(x) = x2B′(x) + xB(x) + 1.

Substituting B(x) into the equation above, we obtain the desired result.

Theorem 38. For the POP p =

4
3

5

2
1

we have a(0) = 1 and, for n > 1,

a(n) =
1

n(n+ 1)

n−1∑
i=0

(
2i

i

)(
n

i+ 1

)(
n+ 1

i+ 1

)
.

This is the sequence A128088 in [28].

Proof. It is known [7] that the number of 1234-avoiding n-permutations is

1

(n+ 1)2(n+ 2)

n∑
i=0

(
2i

k

)(
n+ 1

i+ 1

)(
n+ 2

i+ 1

)
.

We can now use Theorem 4 to obtain the desired result.

5 Concluding remarks

A number of conjectured connections between sequences in the OEIS and permutations
avoiding POPs of length 5 appear in Table 5.

One can ask a number of bijective questions even in some cases where connections to
the OEIS were explained. In Tables 6 and 7 we list a number of potentially interesting
bijective questions. We refer to the OEIS [28] for the definitions/further details of the
objects mentioned in the table. Note that Table 6 contains bijective questions related to
previously considered permutation pattern avoidance. In that table, a vincular pattern
is like a classical pattern, but it allows imposing the condition on certain elements in
an occurrence of the pattern to be consecutive in a permutation, which is denoted by
underlying the respective elements in the pattern [20]. For example, in the permutation
2415763 there are three occurrences of the vincular pattern 123, namely, the subsequences
257, 457 and 157. Note that, e.g. the subsequence 256, being an occurrence of the pattern
123, is not an occurrence of the pattern 123 because 5 and 6 are not consecutive.

As a final remark, we note that there is a simple connection between p-avoiding n-

permutations for the POP p =
2

1
3 4

considered in Theorem 10 and n-permutation in
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POP OEIS Equinumerous structures

2
1

4 3
A111281 permutations avoiding the patterns

2413, 2431, 4213, 3412, 3421, 4231, 4321, 4312

1
2

4 3

A111282 permutations avoiding the patterns
1432, 2431, 3412, 3421, 4132, 4231, 4312, 4321

2
1

3
4 A111277 permutations avoiding the patterns 2413, 4213, 2431,

4231, 4321; also, permutations avoiding the patterns
3142, 3412, 3421, 4312, 4321

2
1

3
4 A006012 permutations avoiding the vincular patterns

1324, 1423, 2314, 2413 considered in [5]

2

1

43

A025192 permutations π1 · · · π3n avoiding the patterns 231,
312, 321 and satisfying π3i+1 < π3i+2 and
π3i+1 < π3i+3 for all 0 6 i < n. Equivalently, 2-ary
shrub forests of n heaps avoiding the patterns 231,
312, 321; see [4]

2

1

3 4

5
A054872 permutations avoiding the patterns 12345, 13245,

21345, 23145, 31245, 32145; note that avoiding these
patterns is the same as avoiding the POP {5 > 4,
4 > 1, 4 > 2, 4 > 3}

3

1

4
5

2 A212198 permutations avoiding the marked mesh pattern
M(2,0,2,0) in [23]; these permutations are proved
to be in bijection with pattern-avoiding involutions
In(>, 6=, >) in [26]

3

5

2

4

1
A224295 permutations avoiding the patterns 12345 and 12354;

note that, by Theorem 1, avoiding these patterns is
the same as avoiding the POP {1 > 2, 2 > 3, 3 > 4,
3 > 5}

Table 6: A list of potentially interesting bijective questions for permutations avoiding a
POP and other pattern avoiding permutations.

the class S2(1, n) in [8] dealing with the vincular POP
2

3
4 1

in occurrences of which the

elements in all but the first position must be consecutive. Wilf-equivalence of these POPs
is essentially given by Wilf-equivalence of the sets of patterns {132, 231} and {312, 321}
[20].

Acknowledgements

The authors are grateful to Stephen Gardiner for producing his software.

the electronic journal of combinatorics 26(3) (2019), #P3.26 28



POP OEIS Equinumerous structures

3

1

2 4

A045925 levels in all compositions of n+ 1 with only 1’s and 2’s

4

1

2 3

A214663 n-permutations for which the partial sums of signed
displacements do not exceed 2

A232164 Weyl group elements, not containing an sr factor, which
contribute nonzero terms to Kostant’s weight multiplicity
formula when computing the multiplicity of the
zero-weight in the adjoint representation for the Lie
algebra of type C and rank n

4
1

2
3 A271897 sum of all second elements at level n of the TRIP-Stern

sequence corresponding to the permutation triple (e, e, e)

3
1

2
4 A052544 compositions of 3n+ 1 into parts of the form 3m+ 1

2

1

43 5

A084509 number of ground-state 3-ball juggling sequences of
period n

2
3

4 5

1 A118376 series-reduced enriched plane trees of weight n; also,
trees of weight n, where nodes have positive integer
weights and the sum of the weights of the children
of a node is equal to the weight of the node

Table 7: A list of potentially interesting bijective questions for permutations avoiding a
POP and other combinatorial structures.
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