Abstract—A resonant cavity is developed with a metallic photonic crystal (MPC) to reduce the magnetic field strength and suppress mode competition for a terahertz fourth-harmonic gyrotron. Due to the photonic band gap, electromagnetic waves radiated in certain directions at specified frequencies cannot propagate in the photonic crystal. The dispersion relations of MPC were numerically calculated using a finite-difference frequency-domain method. The gap map for a square lattice of metallic rods was derived from the dispersion relations as the radius of the rods varies. The map of the localized modes in the defects was plotted to illustrate the connection between the band structure and the TE modes. The MPC cavity was simulated and better performance was demonstrated in terms of mode competition compared with a circular waveguide cavity of equivalent cut-off radius at 1-THz.

Keywords—harmonic operation, photonic crystal, photonic band gap, mode competition, gyrotron

I. INTRODUCTION

High-power electromagnetic sources in the terahertz (THz) band have attracted extensive interest for its potential applications in fields of communication, radar, environmental monitoring, spectroscopy, etc. But current commercial devices do not meet the requirements of both high power and broad bandwidth [1]-[4]. The gyrotron is an electronic device based on the electron cyclotron resonance with the lattice form, it can be divided into a triangular lattice PC or a square lattice PC.

A. Photonic Crystal

A PC is a periodic arrangement of metal or dielectric structures. It usually consists of one-, two-, or three-dimensional structures. The defining feature of a PC is the periodicity of the material along one or more axes. According to the lattice form, it can be divided into a triangular lattice PC or a square lattice PC.

B. Master Equations of the 2-D PC

As the negative magnetic permeability $\mu (\rho)$ is very close to unity, and there are no sources, we can set the free charge $\rho = 0$, current densities $J = 0$ and $B = \mu H$. For simplicity, the materials are linear and lossless and the field pattern varies harmonically with time. Since the system is homogeneous along the Z-direction the 2-D MPC structure, the master equations derived from Maxwell’s equations are given by

$$\begin{align*}
\frac{\partial H_x^2}{\partial z} + \frac{\partial H_z^2}{\partial z} &= \left(\frac{\omega}{c}\right)^2 H_x(TE) \\
-\frac{\partial E_x^2}{\partial z} - \frac{\partial E_y^2}{\partial z} &= \left(\frac{\omega}{c}\right)^2 E_x(TM)
\end{align*}$$

The master equations contain everything we need to know about the system along with the boundary conditions for metallic rods as specified below

$$\begin{align*}
\frac{\partial H_x}{\partial n} &= 0 \quad (TE) \\
E_y &= 0 \quad (TM)
\end{align*}$$

C. Square Lattice and Irreducible Brillouin Zone

The cross section of the square lattice is shown in Fig. 1(a) and the center blue square is a unit cell. Fig. 1(b) shows the reciprocal space of the square lattice, where the red triangle is an IBZ. The variation of the wave vector k of the square lattice along the IBZ is shown in Table I. Due to its translational...
symmetry, the unit cell should satisfy the square lattice periodic boundary conditions in the periodic direction.

\[
\begin{align*}
\Psi(x + a, y) &= e^{-ik_\text{x} a} \Psi(x, y) \\
\Psi(x, y + a) &= e^{-ik_\text{y} a} \Psi(x, y)
\end{align*}
\]
(3)

Where \(\Psi\) is the electric field or magnetic field in the unit cell, and \(k_\text{x}\) and \(k_\text{y}\) are the wave vector along the \(x\) and \(y\) direction separately.

D. Dispersion Relations and Gap Map

The dispersion relations describe the band structure of the PC. Using the FDFD method, the master equations of the square lattice MPC is calculated along the boundary of IBZ, and the dispersion relations can be obtained.

A plot of the locations of the PBG of a crystal, as one or more of the parameters of the crystal are varied, is what we call a gap map [7]. The gap map for the square lattice of metallic rods can be derived from dispersion relations as rod radius varies. Fig. 2 shows gap maps for the TE modes in square lattice as a function of ratio of rod radius \(r\) to lattice constant \(a\), which agrees with the outcome in [11].

III. DESIGN OF RESONANT CAVITY

In order to design a resonant cavity using PC, it is necessary to introduce defects by removing several metallic rods. The modes whose frequency is inside the PBG can be confined in defects as a certain high-order mode, and the modes outside the band gap are scattered in the lateral direction of the waveguide and thus are suppressed. Fig. 3 shows the structure of a MPC cavity with 21 rods removed from the center.

The relationship between the modes of a circular waveguide and the cut-off radius is given by:

\[
R = \frac{cp_m}{f_{\text{Norm}}} = \frac{p_m a}{f_{\text{Norm}} \cdot 2\pi}
\]
(4)

where \(p_m\) is the \(n\)-th root of the derivative of the \(m\)-order Bessel function, and the normalized frequency \(f_{\text{Norm}} = f a/c\).

From Fig. 3, the equivalent operation radius \(R\) of the equivalent circular waveguide (ECW) is \(R = \sqrt{10a - r}\), therefore, we have

\[
\lambda_{\text{Norm}} = \frac{\lambda}{a} = \frac{\sqrt{10a - r} - 2\pi}{p_m a} = \frac{2\pi}{p_m a} \left(\sqrt{\frac{10a - r}{a}}\right)
\]
(5)

where the normalized wavelength \(\lambda_{\text{Norm}} = 1/f_{\text{Norm}}\).

The mode map of the circular waveguide from the gap map can be obtained using (5) and is shown in Fig. 4.

Due to the fact that the cavity boundary where the rods are removed is not perfectly circular, the field distribution in the cavity is slightly different from the field in a circular waveguide.
energy is distributed in the center of the cavity, which means the mode is localized in the defects. A TE$_{4,10}$ mode in the 1.0008-THz is shown in Fig. 5(a). Most of the electromagnetic wave inside the defects are introduced, the band gap may change slightly, because there are fourth-harmonic mode in the gap, which has a higher radial index as shown in Fig. 4 of the plot of the circular-waveguide-like mode. The TE$_{4,10}$ works in the range of 0.38 to 0.392 and the normalized wavelength range is 0.4958 to 0.498. However, the calculation result of the PBG cavity is compared with those of a ECW for neighboring modes around the operating frequency. As in [13], the cavity discussed above can be used to reduce the magnetic field strength and to suppress the mode competition for THz gyrotrons.

![Mode pattern of TE$_{4,10}$-like eigenmode in the MPC cavity at 1000.8 GHz. (b). Mode pattern of the TE$_{4,10}$ eigenmode in the equivalent cylindrical cavity at 1010.6 GHz.](image)

(a) (b)

Table II

<table>
<thead>
<tr>
<th>Mode in ECW</th>
<th>Frequency (GHz)</th>
<th>Ohmic Q factor</th>
<th>Mode in MPC</th>
<th>Frequency (GHz)</th>
<th>Ohmic Q factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE$_{6,5}$</td>
<td>999.3</td>
<td>15412</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE$_{4,9}$</td>
<td>1002.3</td>
<td>17600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE$_{4,10}$</td>
<td>1010.6</td>
<td>17586</td>
<td>TE$_{4,10}$</td>
<td>1000.8</td>
<td>8989.6</td>
</tr>
<tr>
<td>TE$_{11,2}$</td>
<td>1012.4</td>
<td>17132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE$_{211}$</td>
<td>1015.6</td>
<td>18183</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE$_{0,11}$</td>
<td>1017.2</td>
<td>16843</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

waveguide. But the higher the radial index is, the better similarity they have. We choose PBG3 as operating band gap because there are fourth-harmonic mode in the gap, which has a higher radial index as shown in Fig. 4 of the plot of the circular waveguide mode in the PBG3 gap map, where λ_{Norm} is the normalized wavelength of TEm$_{m,n}$ mode contained in the PBG cavity. Fig. 4 can be used to enable an informed choice for the dimensions of the lattice and the operation mode [12].

According to Fig. 4, we select the TE$_{4,10}$ mode as the operating mode, which is at the bottom of Fig. 4, and far from the upper modes. The TE$_{4,10}$ mode works in the range of 0.38 < r/a < 0.392 and the normalized wavelength range is 0.4958 < λ_{Norm} < 0.498. However, the calculation result of the PBG is obtained in the case of an ideal PC without defects. When the defects are introduced, the band gap may change slightly, and the mode map within the band gap is changed accordingly. The final parameters were chosen as r/a = 0.392 and a = 0.6 mm.

The structure was simulated using the Finite Element Method and the mode pattern of the TE$_{4,10}$-like mode at 1.0008-THz is shown in Fig. 5(a). Most of the electromagnetic energy is distributed in the center of the cavity, which means the mode is localized in the defects. A TE$_{4,10}$ mode in the ECW with equivalent radius R is simulated and plotted in Fig. 5(b). Since the inner edge of MPC cavity is not a perfect circle, the deformation appears in Fig. 5(a). Along the radial direction, the farther away from the axis, the more severe the distortion. But the mode distribution in the center of the cavity is exactly similar with that of the ECW, which is in good agreement with the theoretical analysis.

The comparison of the circular waveguide mode between the MPC resonator and ECW resonator is shown in Table II. Due to limitations in computer performance, only simulations of the TE$_{m,n,0}$ mode have been made here. It can be seen from Table II that PC can effectively suppress the competition of the circular-waveguide-like mode.

IV. SUMMERY

In this paper, the master equations of the 2-D PC are derived. The gap map of the square lattice for TE type modes was calculated by solving the master equations using FDFD method. A square lattice resonator was designed by removing 21 metallic rods from the center. The mode map of the ECW is plotted in the PBG3. A MPC resonant cavity working in the TE$_{4,10}$-like mode was designed and simulated at 1000.8-GHz. The mode density and the quality factor of the designed PBG cavity is compared with those of an ECW for neighboring modes around the operating frequency. As in [13], the cavity discussed above can be used to reduce the magnetic field strength and to suppress the mode competition for THz gyrotrons.

ACKNOWLEDGEMENT

The authors would like to thank the Royal Society of London, UK, for providing the Newton Advanced Fellowships (NAF/R1/180121) for Professor Chao-Hai Du.

REFERENCES