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Evolving a Psycho-physical Distance Metric for Generative Design Exploration of
Diverse Shapes

Shahroz Khan∗,1 Erkan Gunpinar2 Masaki Moriguchi3 Hiromasa Suzuki1
1 The University of Tokyo, Tokyo, Japan

2 Istanbul Technical University, Istanbul, Turkey
3 Meiji University, Tokyo, Japan

Abstract

In this paper, a generative design approach is proposed that involves the users’ psychological aspect in the design space explo-
ration stage to create distinct design alternatives. Users’ perceptual judgment about designs is extracted as a psycho-physical
distance metric, which is then integrated into the design exploration step to generate design alternatives for the parametric
computer-aided design (CAD) shapes. To do this, a CAD model is first parametrized by defining geometric parameters and
determining ranges of these parameters. Initial design alternatives for the CAD model are generated using Euclidean distance-
based Sampling Teaching-Learning-Based Optimization (S-TLBO), which is recently proposed and can sample N space-filling
design alternatives in the design space. Similar designs are then clustered and a user study is conducted to capture the subjects’
perceptual response for the dissimilarities between the cluster pairs. Additionally, a furthest-point-sorting technique is intro-
duced to equalize the number of designs in the clusters, which are being compared by the subjects in the user study. Afterward,
nonlinear regression analyses are carried out to construct a mathematical correlation between the subjects’ perceptual response
and geometric parameters in the form of psycho-physical distance metric. Finally, a psycho-physical distance metric obtained is
utilized to explore distinct design alternatives for the CAD model. Another user study is designed to compare the diversification
between the designs when the Euclidean and suggested psycho-physical distance metrics are utilized. According to the user
study, designs generated with the latter metric are more distinct.

Keywords: Generative Design, Computer-Aided Design, Parametric Design, Space-filling, S-TLBO method

1. Introduction

The development of a successful product involves a series
of design phases. Among these phases, the conceptual phase
mostly is recognized as a foundational and fundamental com-
ponent. The exploration and formulation of different design
options within the product’s design specifications are an impor-
tant characteristic of this phase. At this phase, it is essential for
the designers/engineers to explore and develop a wide variety of
creative and ingenious designs/solutions to a product/problem.
However, the creation of these alternatives using the traditional
design tools is a time-consuming and difficult task, especially
for novice designers, but with the recent advancements in the
artificial intelligence, design optimization, and parametric tech-
niques the traditional design tools are becoming sophisticated
and intuitive.

The generative design systems use these techniques to pro-
vide a promising way to iterate through variant design alter-
natives based on the user-defined objective. However, despite
the proven feasibility of the generative design systems in term
of exploring better performance design options, the literature
contains few attempts to utilize these systems to explore design
alternatives for the parametric CAD models specifically on ac-
count of their form appearance. The generative design systems
such as DesignN [1] Genoform [2] and Autodesk’s Fractal [3]
explore parametric space for shape variation, however, among

these, [2] and [3] are based on the exhaustive and iterative
search techniques to induce variation between designs, respec-
tively. Therefore, due to their exhaustive and iterative search
nature, these techniques can only explore a limited region of
design space and thus cannot always guarantee the generation
of diverse and appealing design options for the designers.

At the conceptual design phase, it is also crucial for a de-
signer to create a product that not only satisfies design spec-
ifications but also meets the customers’ psychological prefer-
ence of the product’s appearance to make the product success-
ful within the market. The customers’ psychological satisfac-
tion with a product drives significantly from its form appear-
ance. Therefore, an important element of the design explo-
ration process should be the consideration of the psychologi-
cal aspect of a product, including the visual perception of the
potential user to the proposed design alternatives for the prod-
uct. Therefore, the prime objective of this work is to develop
a technique that can effectively explore a design space and rec-
ommend/sample aesthetically convincing and diverse design al-
ternatives for a product at the conceptual phase of the design
process. In which diversification between designs is achieved
with a psycho-physical metric evolved from the users’ percep-
tion of the design alternatives.

To achieve the above objective, in this work, a generative de-
sign approach is proposed which integrates a psycho-physical
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Figure 1: Overview of the proposed approach.

distance metric to induce human perception for the design di-
versification during the design space exploration. This ap-
proach is based on a newly introduced CAD model sampling
technique called Sampling-TLBO (S-TLBO) [4], which uses a
Teaching-Learning-Based Optimization (TLBO) technique [5]
to find the N optimal space-filling design alternatives for a
given model within the class of semi-Latin Hypercube (LH)
designs. Figure 1 shows an overview of the proposed approach.

The proposed approach commences by representing a CAD
shape with a set of appropriate geometric/design parameters
(see Figure 1). A design space is formed by setting the upper
and lower bounds to the geometric parameters. Each geometric
parameter represents a dimension in the design space. The de-
sign alternatives for the CAD model are created in the design
space while considering the space-filling and non-collapsing
criterion via S-TLBO. To learn the psycho-physical distance
metric for the parametric shape, user studies were conducted
between subjects of varying backgrounds. First, N initial de-
sign alternatives of the CAD model are generated using S-
TLBO, and similar designs are then clustered. Afterward, the
user study is conducted in which subjects are asked to indicate
their perceptual response about the relative degree of dissimi-
larity between each pair of clustered designs. To ease subjects
during the study, the size of comparing cluster pairs are equal-
ized using a new furthest-point-sorting technique. The statis-
tical analysis such as nonlinear regression was performed to
learn a psycho-physical relationship between geometric param-
eters and users’ perceptual response about design dissimilari-
ties. The mathematical model obtained was then regarded as
a psycho-physical distance metric. The results were also vali-
dated through various statistical tests. Figure 2 shows the se-
quential flow of the implementation of the methods utilized to
learn this metric. Finally, a comparative study was conducted to
compare the sampling quality when the Euclidean and psycho-
physical distance metrics are employed.

The main contribution of this work is the development of a
novel perceptual model, psycho-physical distance metric, for
design diversification and the integration of this model with
the generative design to develop a design methodology, which
can be used for the diverse design exploration of a given shape.
Such design technique can help engineers and designers to cre-
ate innovative and distinct designs during the conceptual phase
of the design process, which can be later validated for function-

ality, structural integrity, and usability via computer simulations
during the design validation phase. To the best of our knowl-
edge, there is no generative design system/technique that in-
tegrates design diversification based on human perception into
the exploration of parametric design spaces.

The remainder of this paper is organized as follows: Section
2 reviews relevant literature. Formulation of original S-TLBO
algorithm is described in Section 3. Section 4 presents the ex-
traction process of the psycho-physical distance metric. The
numerical results for the test models of the proposed approach
are given in Section 5. Concluding remarks and opportunities
for future work are given in Section 6.

2. Related works

The research topic of this work is more related to generative
design, the human perception in design and sampling for space-
filling designs, thus discussed here.

2.1. Generative design

In the last decade, generative design systems gained tremen-
dous attention in industry and academics and have served as
an advanced design tool which automatized the design process
from its conceptual phase to the final fabrication phase. Most
of the researchers’ efforts in this field to explore design alter-
natives for the parametric CAD models are related to the ar-
chitectural application, and few other works are done on the
development of system generative creation of a specific class
of products.

Krish [2] proposed a generative design system called Geno-
form for design exploration of parametric shapes. In Genoform,
designer iterate through the randomly generated designs from
a design space. To create variant designs, the designer defines
a threshold value, which is set on the Euclidean distance be-
tween the generated designs. A drawback of Genoform is that
it is based on an exhaustive search and can explore a limited
region of design space. This hinders designers from generating
creative designs. Similar to Genoform, recently, a new system
called Fractal [3] has been developed by Autodesk. Fractal is
based on a simple iterative approach in which each parametric
range is divided into a certain number of levels, and then Frac-
tal enumerate through all design possibilities. For instance, for
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Figure 2: Flow of the proposed approach.

n geometric parameters each with I intervals, Fractal provides
nI design options. Recently, Gunpinar et al. [6] proposed a
generative design system for the generation of Sedan Car Side
Silhouettes. They also integrated their system with machine
learning techniques to predict the drag coefficients of Car Sil-
houettes during design space exploration. Patel et al. [7] intro-
duced a 3-dimensional (3D) sampling based generative design
system called 3DJ for synthesize new texture designs from 3D
scenes. Another generative design system, DreamSketch, was
proposed by Kazi et al. [8] to support the generative design in
the conceptual phase. In DreamSketch, a user can create de-
sign alternatives in the sketched context. Therefore, to utilize
this system, the user required to have digital sketching abil-
ities. A design sampling technique was introduced by Gun-
pinar and Gunpinar [9] via particle tracing to create parametric
space-filling designs. Hornby [10] and Barros et al. [11] uti-
lized generative design techniques for furniture design. Khan
et al. [12] suggested a spatial simulated annealing based gen-
erative design technique for creating customer-centered prod-
ucts. For an architectural application of generative design, Shea
et al. [13] introduced a performance-driven generative design
method to lightweight cantilever roof structures while integrat-
ing two generative structural design systems, efiForm and Bent-
ley’s Generative Components. Other architectural generative
design systems are ParaGen and Dexen for exploring paramet-
ric structures and façade designs were introduced by Turrin et
al. [14] and Patrick [15]. Moreover, different researchers have
also developed generative design techniques to create building
[16] and site [17] layouts and energy efficient building designs
[18].

Many researchers have also developed shape grammars [19],
L-systems [20] and component-based [21, 22] generative de-
sign systems for different applications. Shape grammars uti-
lize a set of different geometric logics/rules to generate de-
sign alternatives for a given shape. Unlike shape grammars, in
parametric-based design exploration processes, the important
features of the design are selected/identified and parameterized
with an appropriate set of geometric parameters. The varia-
tions of the input model are obtained by altering these param-
eters. On the other hand, in shape grammar design variations
are generated by synthesizing different features into the initial
design with the aid of geometric rules, which ensure the cre-
ation of feasible shapes [19]. Some common applications of
shape grammars are architectural design [23], 2D automotive
design [24], embroidery design [25], and wheel shapes with the
integration of Finite Element Analysis (FEA) [26].

L-systems [27] are a variation of shape grammars, and uti-
lize a set of production rules based on string rewriting mech-
anisms to formalize design alternatives. These systems have
been utilized for different design problems such as generating
realistic models of temperate-climate trees and shrubs [28] and
complex building models [29]. In component-based synthesis
techniques [21], a system is first trained using a large dataset of
existing shapes. The system is then used to synthesize variant
design alternatives.

Compare to shape grammar and component-based genera-
tive systems, parametric design exploration might restrain users
from creating design alternative with a completely new feature
because the initial design is parameterized based on that de-
sign features that are initially chosen by the user. In case of
shape grammars, setting geometric rules at the conceptual de-
sign phase of a product can be time-consuming and cumber-
some for a novice designer to explore feasible shapes if they
are not available at hand. Ambiguous set of human-defined
rules might also limit the designer to explore the design space
for obtaining a satisfactory shape [30]. Furthermore, despite its
different applications, shape grammar’s usage is limited to in-
dustry. This is because of its computational complexity and re-
quirement for forming a specific set of geometric rules for each
application, which requires special expertise [2]. Moreover, the
component-based systems [21] can only be used for creating al-
ternatives of existing shape, which limits their implementation
at the conceptual stage, because usually there may be no exist-
ing or a few CAD models at this stage [9]. Our technique can
generate distinct designs based on the design features (initially
chosen by the user) in the CAD model.

2.2. Human perception in design

Recently, the fusion of human perception into the design
processes has gained notable attention from different research
communities. Among many human perception criteria, de-
sign aesthetics is the well studied one. Many researchers have
worked on design techniques to create aesthetically or stylisti-
cally optimal designs. For instance, Dev et al. [31] proposed
a perceptual-based technique to compute a metric that gives an
aesthetic ranking for a 3D shape. Their metric can be used to
arrange the collection of design variations for shapes based on
the aesthetics and provides user ability to identify and select
the most aesthetic designs. A perception based style compati-
bility metric for furniture models was developed by Liu et al.
[32] to generate compatible arrangements of furniture for 3D
scenes. A similar metric was also developed by Lim et al. [33]
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to measure the style similarity for a collection of designs. Sec-
ord et al. [34] proposed a perceptual model to find the good-
ness of a viewpoint for a 3D shape and Zhang et al. [35] also
introduced a perceptual model for finding preferable 3D print-
ing direction, which reduces the visual artifacts caused by the
overhang supports. Recently, Hoshyari et al. [36] utilized hu-
man perception of shapes to create vector images of shapes,
which maintains consistencies with the viewer’s expectations.
Tseng et al. [37] utilized artificial neural networks to quantita-
tively map the consumer judgments about the stylistic form of
two-dimensional car designs and explored design space using
multi-objective genetic algorithm while taking user’s stylistic
judgment and fuel consumption into account. In another study,
Tseng et al. [38] studied the relationship of user quantified at-
tributes for car design (such as sporty, rugged, aerodynamic and
fuel efficient) to investigate how designers can generate designs
that better represent consumer’s desired goal.

A substantial amount of work has been done by different re-
searchers to capture and involve customer’s psychological per-
ception in the product design process employing semantic at-
tributes or Kansei-tags. In these techniques, a set of suitable at-
tributes are first selected for a product. A mathematical model
is then constructed to establish a correlation between the rela-
tive attribute and the product’s form features. Chen and Chang
[39] developed Kansei-tags for knife model. They conducted
a user study to match the Kansei-tags with manually created
different knife shape. They then performed a linear regression
analysis to construct a linear relationship between each attribute
and geometric parameters. Other researchers have done similar
studies for cellular phone [40] and yacht [41] designs. Mata et
al. [42] investigated the relationship between the user’s percep-
tions and design aesthetics. The experiments were conducted
using 11 different classes of vase designs and the results of the
user study were analyzed using various statistical analyses. The
identified relationships in [42] can help designers to determine
important parameters in vase design and how these parame-
ters can be altered to achieve concrete user perceptions. How-
ever, in [42] user perception about design diversification was
not studied. User studies were conducted on the existing 2D
vase and no parametric design exploration process was carried
out.

Some researchers have also involved human perception into
shape-synthesis techniques. Chaudhuri et al. [22] developed an
attribute-based shape synthesis system called Attriblt. Models
were first segmented into meaningful components. User studies
were then conducted to learn the degree of a relative semantic
attribute for each component. A machine learning model was
trained to sort the degree of attributes, which was then used to
synthesize new models by merging the components. As men-
tioned in Section 2.2, the shape-synthesis techniques can only
be utilized when there is a dataset available consisting of differ-
ent variations of the input shape.

Integration of customers’ judgment in the optimization pro-
cess along with the engineering performance objective was
studied by Kelly et al. [43] and Villa and Labayrade [44].
Barnum and Mattson [45] presented an interactive and com-
putationally assisted technique for capturing and incorporat-

ing designer preferences at the conceptual phase of the design
process. Barnum and Mattson tested their method for differ-
ent vehicle designs. Orsbon et al. [46] demonstrated the es-
timation of customer preferences as utility functions to obtain
higher utility product forms and validated their technique for
two-dimensional vehicle designs. Different researchers also
proposed different interactive design techniques to involve de-
signer preferences in the design process [47, 48].

Though there has been a considerable amount of effort in
capturing and integrating human perception in various design
applications, however, to the best of our knowledge, there has
been no significant efforts in academia and industry to compu-
tationally integrate human perception about 3D design diversi-
fication into the parametric design space exploration.

2.3. Space-filling designs
Fuerle and Sienz [49] proposed a genetic algorithm based

method to produce space-filling DoE in constrained spaces.
This method has some drawbacks such that it cannot be im-
plemented for high-dimensional problems more than 3D. Fur-
thermore, it does not produce good results for a design space
where infeasible designs are spread irregularly. Cioppa and
Lucas [50] introduced an algorithm for constructing orthogo-
nal space-filling DoE in the class of Latin Hypercube design.
However, their algorithm is computationally expensive because
its long run times and is unsuitable for high-dimensional prob-
lems. Trosset [51] and Stinstra et al. [52] used maximin cri-
terion for the construction of space-filling designs in the con-
strained 10-dimensional design space. The technique proposed
by Stinstra et al. does not guarantee the sampled designs to be
non-collapsing. Draguljić et al. [53] proposed a CoNcaD algo-
rithm for constructing non-collapsing and space-filling designs
for confined nonrectangular design spaces. However, S-TLBO
can sample better space-filling designs compared to the meth-
ods mentioned above, which is proven in [4].

3. Sampling teaching-learning-based optimization (S-
TLBO)

S-TLBO was originally proposed by Khan and Gunpinar [4]
for the automatic search and generation of design variations for
a CAD model in its predetermined design space. This technique
is based on the Teaching-Learning-Based Optimization tech-
nique [5] and can generate N optimal designs in the constrained
and unconstrained spaces. In S-TLBO, the sampling process
starts by parameterizing the given CAD model with n geomet-
ric parameters X = [x1, x2, x3, . . . , xn]. To create N distinct
designs, S-TLBO randomly generates a population consisting
of N sub-populations and improves learners/designs in these
sub-populations using teaching and learning phases of typical
TLBO. The best solution of each sub-population is regarded
as a teacher. To obtain distinct designs, S-TLBO favors de-
signs having space-filling and non-collapsing properties. Fur-
thermore, the designs, which do not satisfy the predefined geo-
metric constraints, are penalized using a weighted constraint
handling mechanism. Space-filling designs are achieved by
minimizing a Euclidean-distance based Audze and Eglais’ po-
tential energy [54] given in Equation 1. S-TLBO terminates
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when there is no or negligible change in the cost function. Af-
ter termination, teachers (T ) of sub-populations are regarded as
the sampled designs.

U(T ) =

N−1∑
p=1

N∑
q=p+1

1∑n
j=1(xp, j − xq, j)2 (1)

In Equation 1, U(T ) is the potential energy of teachers T ,
xp, j and xq, j are the scaled values for jth geometric parameter of
design p and q, which are computed by scaling parameter val-
ues between 0 (i.e., lower bound for the parameter) and 1 (i.e.,
upper bound for the parameter). n and N are number of total
geometric parameters and designs, respectively. Algorithm 1
summarizes the procedure of S-TLBO.

Algorithm 1 The pseudo-code of S-TLBO algorithm

1: Initialize the number of parameters (n), parameter ranges,
number of designs to be created (N), sub-population size
(s) and parameter α, which controls the degree of non-
collapsingness between designs.

2: Randomly create an initial population (P) consisting of N
sub-populations (p) of size s.
P =

[
(p1)s×n (p2)s×n (p3)s×n . . . (pN)s×n

]T
with

(pL)s×n =


X1
X2
...

Xs

 =


x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n
...

...
...

...
xs,1 xs,2 . . . xs,n

 where 1 ≤ L ≤ N

3: Select N initial teachers/best-designs (T =

[T1,T2, . . . ,TN]) one from each sub-population.
4: while termination criterion is not satisfied do
5: for L = 1 to N do
6: for k = 1 to s do
7: Update design Xk of (pL)s×n using Teacher and

Learner phase based on TL and obtain updated de-
sign X′k.

8: Calculate cost value U(T ′) and U(T ) for T ′ =

[X′k,T2, . . . ,TN] and T = [Xk,T2, . . . ,TN].
9: if U(T ′) < U(T ) then

10: Accept the design X′k
11: else
12: Accept the design Xk

13: end if
14: end for
15: Update (pL)s×n, which is (p′L)s×n.
16: Find the new teacher T ′L and replace in T with TL

17: end for
18: end while

4. Proposed approach

The objective of the proposed approach is to involve human
perception during the design space exploration to create variant
design alternatives. To achieve this, we introduced a psycho-
physical distance metric which is extracted using human judg-
ment about the design diversification. The steps for developing

the psycho-physical distance metric for any given CAD model
is introduced, which will be then utilized for exploring design
variations.

4.1. Design parametrization and design space formulation

The decision on the selection of appropriate geometric pa-
rameters is critical for representing a parametric shape well.
Literature comprises a substantial amount of work for the gen-
eration of a well-structured parametric CAD model [55, 56],
which should aid the designer to create plausible/feasible de-
sign variations compared to a poorly organized one. It is hard
to keep the original physical form for a model with a vast num-
ber of parameters during parametric modification. Designers
mostly desire to preserve the common underlying structure of
the model during modifications [2]. Cagan et al. [57] have de-
scribed the design parametrization process as an iterative task,
in which the final decision on the selection of suitable design
parameters depends on the designer’s understanding, perfor-
mance objective and design’s construction process.

In this work, we followed the parametrization strategy of
Khan and Awan [1], in which important features are first
parametrized with a large number of geometric parameters. Af-
ter some trials, quixotic parameters, which might disrupt the
underline structure of the model or might account less in the
overall variation, are eliminated.

Each parameter in the model represents a dimension in the
design space, φ. To determine the boundary of the design space,
the range of each parameter is first set. These parametric ranges
usually set tentatively based on the designer’s understanding
of approximate parametric ranges for creating feasible designs
[2], design specifications and functional requirements given by
the customer [57] while keeping the initial design at the center
of design space. If no design specifications are given in the
conceptual phase, the upper and the lower bounds of an initial
design space can be set, respectively, as a certain percentage
of increment and decrement in initial parameter values of the
input design [1].

4.2. Design clustering

First, N design alternatives are generated via S-TLBO tech-
nique in a predefined design space. X = [xm,1, xm,2, . . . , xm,n]
denote geometric parameters for the design with index m. [xl

m, j]
and [xu

m, j], respectively, represents the lower and upper bounds
of the jth parameter for the design with index m. These designs
are then utilized in the user study to acquire the dissimilarity re-
sponses between designs from the subjects. Note that a higher
number of design alternatives should be created at this stage to
achieve higher diversities between designs. This diversity can
help accurately capture dissimilarity responses between designs
and will also create relatively big training data that potentially
aids in nonlinear regression results. The paired comparison can
be one way to compare

(
N
2

)
= N!

2!(N−2)! design pairs in this study.
This is, however, practically impossible and can cause respon-
dent fatigue when N is large. To overcome this issue, similar
designs are clustered into groups and comparisons are done be-
tween cluster pairs rather than individual design comparison.
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The design alternatives are clustered into K clusters using
Ward’s hierarchical clustering method [58]. It is expected that
some geometric parameters account more in the model’s visual
shape variation compared to others. If design clustering is done
based only on the geometric parameter values, visually unique
designs may be in the same cluster because some parameters
may have a higher impact on the visual appearance than oth-
ers. For this reason, design clustering is performed based on
a feature vector F , which is shown in Equation 2 and com-
prises of not only n geometric parameters but also includes
some geometry information of the model such as position of
(2n) sampled points (S = [s1, s2, . . . s2n]) and (2n) curvature
values (C = [c1, c2, . . . , c2n]) at these sampled points. Here,
we assume that the CAD model is represented using curves,
in which equal-distanced points are sampled along the curves’
parametric length. For the model composed of multiple curves,
2n points are sampled on each curve. If there are no appropri-
ate curves in the model, F contains only geometric parameters.
The F is in the form of N × 5n matrix (see Equation 3) and
illustrates a model represented using a single curve.

F =
[
(X)N×n (S )N×2n (C)N×2n

]
(2)

(X)N×n =


x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n
...

...
...

...
xN,1 xN,2 . . . xN,n

 (S )N×2n =


s1,1 s1,2 . . . s1,2n

s2,1 s2,2 . . . s2,2n
...

...
...

...
sN,1 sN,2 . . . sN,2n


(C)N×2n =


c1,1 c1,2 . . . c1,2n

c2,1 c2,2 . . . c2,2n
...

...
...

...
cN,1 cN,2 . . . cN,2n


(3)

K clusters are formed based on F via Ward’s clustering
method. The optimal value for K is obtained using the Elbow
partitioning method [59], which segments the designs into K
clusters by minimizing the total intra-cluster variation or the
total within sum of square (WSS). The total WSS measures the
compactness of the clustering and should be kept as small as
possible. The Elbow method takes WSS as a function of K.
K is increased gradually and is set to a value so that further
increment in K does not improve the total WSS.

4.2.1. Design sorting
The number of designs in each cluster can vary depending on

the test model. This uneven size of each cluster can create con-
fusion for the subjects in the user study. The size of the cluster
pairs is equalized to the size of the smallest one of the two. This
is done by removing designs from the cluster having a higher
number of designs. The decision on which design to remove
should be made in a systematic way. Randomly choosing a de-
sign and removing it from the cluster might result in removal
of the most representative designs of the cluster. Therefore,
a furthest-point-sorting technique is proposed to equalize the
designs while ensuring the most representative designs of the
cluster retain in the cluster.

Let D be the number of designs in the cluster k, which is
sorted and inserted in a design set, R, using Algorithm 2. The

most representative design is first found that has a minimum
Euclidean distance to the centroid of the cluster Ek. The repre-
sentative design is then removed from the cluster and inserted
in R. Afterward, a design is selected from the cluster which
maximizes the minimum Euclidean distance with the design(s)
in R. Other designs are chosen in this manner and placed in R.
When D designs are found, the algorithm stops.

Algorithm 2 The pseudo-code of furthest-point-sorting algo-
rithm

1: Centroid of the cluster Ek =
∑D

i=1 Xi

D
2: Find the first representative design, r1 =

minEuclideanDist(EC , X1,2,...,D ∈ k)
3: Place the first representative in set R (R← r1)
4: for i = 2 to D do
5: ri = argmax(X) miniEuclideanDist(R, X1,2,...,D−(i−1) ∈ k)
6: R← ri

7: end for

4.3. Extracting psycho-physical distance metric

A user study was designed that includes a survey consisting
of

(
K
2

)
cluster pairs to be rated for their dissimilarities by the

subjects. The subjects ranked their perceptual judgment about
the cluster dissimilarities using a seven-point Likert scale with
anchor ranges from ”Very Similar” (1) to ”Very Dissimilar” (7).
For the better estimation of perceptual dissimilarities between
design clusters, it is required to have enough response data from
the subjects. Therefore, Amazon Mechanical Turk (AMT) [60]
platform was utilized. To ensure the reliability of data coming
from subjects, different rules were considered. We hired sub-
jects who were qualified as Masters by AMT. Note that AMT
awards Master qualification to the subjects who demonstrate
excellence across a wide range of tasks and AMT monitors
their performance over time. Furthermore, 10% of the total
cluster pairs were duplicated and were shuffled randomly in the
study. To check the consistency of a subject’s scores, a con-
sistency metric is computed using Equation 4. Here, rp rep-
resents the consistency metric for the pthsub ject. ms

1 and ms
2

are, respectively, the scores given for the tth pair and its du-
plicated pair. The subjects, whose consistency score were less
than 90%, were excluded from the study. Furthermore, the sub-
jects who performed the survey in less than 10 minutes were
also disqualified.

rp = 100 −

100 ×
∑10%(k

2)
t=1 rt

10%
(

k
2

)
 (4)

with

rt =
|mt

1 − mt
2|

7
(5)

Following instructions were given to the AMT subjects:

1. Carefully observe the designs in all views and then rank
the dissimilarities between design clusters based on the
given Likert scale.
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2. The Likert scale has seven rank points from 1 to 7. The
rank of 1 means that designs in two clusters are very sim-
ilar and the rank of 7 means that cluster pairs are very
dissimilar.

3. This part of the survey contains different cluster pairs sets,
and you are required to rank the dissimilarities based on
your personal opinion for each pair.

4. Make sure that you have carefully observed the designs in
both clusters before assigning the final dissimilarity rank.

5. Make sure that you have spent more than 15 seconds on
each pair.

6. We highly recommend you to take a small break after com-
pleting half of the survey to avoid fatigue.

7. This part of the survey will take a minimum of 10 minutes
to complete.

Along with the above instructions, the reliability criterion
was also mentioned to warn subjects to perform their task hon-
estly. To motivate subjects, we provided a bonus of 10% of the
original credit to the subjects who 100% satisfied the reliability
criteria.

We divided the
(

K
2

)
cluster pairs into two sets of surveys. The

subjects were asked to complete the first part of the survey, and
their reliability scores were then checked. If a subject passes
our reliability criterion, the subject was allowed to conduct the
second part of the survey. After excluding the results of dis-
qualified subjects, we hired more subjects. The process was
repeated until responses from 50 qualified subjects were ob-
tained.

After acquiring the dissimilarity responses for the
(

K
2

)
cluster

pairs, the dataset is prepared to construct the relationship be-
tween the dissimilarity responses and the geometric parameters
via the regression analyses. During the user study, the percep-
tual responses from the subjects are the differences between the
appearances of the designs in the clusters, which are regarded
as dissimilarity responses between the cluster pairs in the cur-
rent study. Therefore, an average distance measure, shown in
Equation 6, is utilized to measure the average of the difference
between geometric parameters of the designs in the clusters that
are being compared. Here, these average differences are the
predictor or independent variables, and the averaged responses
from all subjects for each cluster pair are the dependent vari-
ables for the regression analysis. The dataset is standardized by
normalizing the dependent and independent variables between
0 and 1.

∆x j =
1

Dp

1
Dq

Dp∑
p=1

Dq∑
q=1

||xp, j − xq, j|| (6)

Here, ∆x j is the average difference between the jth parame-
ter of the designs in the paired clusters. p and q, respectively,
represent the indices of the designs in the cluster and its pair.
In addition, Dp and Dq are the number of designs in the cluster
and its pair, respectively. xp, j and xq, j are the scaled param-
eter values for design p and q. Now the dataset consists of
a vector of independent variables (∆X = [∆x1,∆x2, . . . ,∆xn])
and a dependent variable Y , which is the scaled average value
of dissimilarity ranks in seven-point Likert scale. To construct

a numerical relationship between these variables, we utilized
a weighted distance metric shown in equation 7, where W =

[w1,w2, . . . ,wn] are the weighted coefficients and f (∆X,W) is
the metamathematical model that provides the fitted or esti-
mated dissimilarity values for each cluster pair. The coefficients
in Equation 7 are estimated via regression analysis to extract a
psycho-physical distance metric.

f (∆X,W) =

√√ n∑
j=1

w j × ||∆x j||
2 (7)

The general form of the regression model is represented as
Y = f (∆X,W) + ε in which the response Y consists of two
parts. The systematic part f (∆X,W), which contains the un-
known weight coefficients W that need to be estimated, and the
random error part ε, which subjects to the normal distribution
and independent from predictors.

To estimate the weight coefficients in a nonlinear regression
function, a least-squares technique [61] is employed as shown
in equation 8. The nonlinear weight estimation is an optimiza-
tion problem, in which the optimization technique tries to find
the values of coefficients W that minimizes the objective func-
tion S (W) between the observed response Y from subjects and
the predictions of the model f (∆X,W).

S (W) =

(K
2)∑

l=1

(Y l − f (∆Xl,W))2 (8)

Here, Y l and ∆Xl denotes the lth sample data of dependent
and independent variable, respectively, and each l corresponds
to one of

(
K
2

)
cluster pairs. The minimization of least-squares

criterion is often referred to as minimizing residual sums of
squares (RSS) with respect to W. As S (W) is nonlinear and
has a various local minimum, it might be advantageous to use
meta-heuristic techniques like TLBO instead of classical meth-
ods such as Gauss-Newton method, which is a simple itera-
tive gradient descent optimization method. The latter approach
requires good starting values for the unknown coefficients to
converge to global optima, which is critical if n is large like
in this work. Therefore, in this study, the regression analyses
are performed via TLBO following the similar methodology as
employed in [62, 63], which utilized particle swarm optimiza-
tion and genetic algorithms to estimate the coefficients of any
nonlinear mathematical model. The advantages of TLBO over
techniques like genetic algorithm and particle swarm optimiza-
tion is its simplicity and no requirement of algorithmic tuning
parameters.

After estimating the weight coefficients, the psycho-physical
distance metric (Hpq) is formalized as in Equation 9 and the
space-filling design alternatives are created using the psycho-
physical distance-based potential energy U(W), shown in Equa-
tion 10.

Hpq =

√√ n∑
j=1

w j × (xp, j − xq, j)2 (9)

and
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Figure 3: CAD models for a wine glass (a), a wheel rim (b) and a chair (c) with their geometric parameters.

U(W) =

N−1∑
p=1

N∑
q=p+1

1
H2

pq
(10)

Here, xp, j and xq, j are the scaled parameter values for design
p and q, respectively.

5. Results and Discussion

In this section, three different CAD models will be first in-
troduced that are used in this study’s experiments. Reliabil-
ity of the mathematical model established to learn the weights
of the geometric parameters is then discussed. Afterward, the
proposed psycho-physical distance metric is integrated into the
sampling process of S-TLBO for the generation of user-driven
variant designs. Finally, the performance of psycho-physical
and Euclidean distance metrics are compared via three user
studies for the test models.

5.1. CAD models

Three CAD models, a wine glass, a wheel rim, and a chair,
are introduced to validate the performance of the proposed ap-
proach and are shown in Figure 3. These models are selected
based on their aesthetic importance. For instance, a wine glass
defines the elegance of the wine drinker; an attractive wheel rim
can make the automobile graceful and elegant furniture can en-
hance the ambiance of a place. These models are parameterized
to achieve higher design variations while keeping their underly-
ing form same. 3D surfaces of the wine glass model are created
by interpolating Coons patches between Bezier curves and the
geometric parameters are defined on these curves. The chair
and wheel rim models are the 3D solid models. Seven geo-
metric parameters of the wine glass model are shown in Figure
3 (a). h1/h2/ h3 and w1/w2/w3 denote the lengths and widths,
respectively, for the first/second/third curve and h0 is the ver-
tical length of glass’s stem. The spokes of the wheel rim are
also created using three cubic Bezier curves (see Figure 4 (d)).
b0/b1 and l0/l1 denote the width and length of the first/second
curve, respectively. θ controls the position of the third curve on
the outer circle of the wheel rim. r0, r1 and r2 represents the
minimum radii of the curvature for the first, second and third
curves, respectively.

The chair model is represented using 12 geometric parame-
ters, as shown in Figure 3 (c). s0 and s1 are the widths for the

seat. s2/s3 and s4 are the width and length of the backrest of
the chair, respectively. t0 and t1 denote, respectively, the ver-
tical and horizontal lengths of the armrests. t2 is the spacing
between armrests. h0/h1 denotes the highest and h2/h3 repre-
sents the horizontal positioning of the back and front legs of
the chair, respectively. The parameter ranges for these models
are given in Table 1. The CAD model modifications of the glass
and rim were performed using the technique proposed by Khan
et al. [64].

Table 1: Parameter ranges of the wine glass, wheel rim, and chair models.

Parametric Ranges

Wine Glass Model

6 ≤ h0 ≤ 13 18 ≤ h1 ≤ 23 26 ≤ h2 ≤ 31 35 ≤ h3 ≤ 40
3.5 ≤ w0 ≤ 12 7.5 ≤ w1 ≤ 12 6.5 ≤ w2 ≤ 12

Wheel Rim Model

12 ≤ l0 ≤ 27 28 ≤ l1 ≤ 40 5 ≤ b0 ≤ 10 0.05 ≤ b1 ≤ 21
3.5 ≤ θ ≤ 30 0 ≤ r0 ≤ 1 0 ≤ r1 ≤ 5 0 ≤ r2 ≤ 5

Chair Model

23 ≤ t0 ≤ 33 13 ≤ t1 ≤ 64 20 ≤ t2 ≤ 40 30 ≤ s0 ≤ 75
25 ≤ s1 ≤ 60 25 ≤ s2 ≤ 70 25 ≤ s3 ≤ 80 70 ≤ s4 ≤ 95
22 ≤ h0 ≤ 30 2 ≤ h1 ≤ 22 26 ≤ h2 ≤ 36 20 ≤ h3 ≤ 48

5.2. Psycho-physical distance metric

Fifty design alternatives for the wine glass, wheel rim and
chair models are generated to learn the psycho-physical dis-
tance metric, which is shown in Figure 4, 5 and 6, respectively.
These initial models are created utilizing S-TLBO under the
setting of s = 30 and α = 5. Recall that s denotes the size of
each sub-population, and α adjusts the degree of non-collapsing
between designs. According to the experiments, S-TLBO con-
verges after 80, 110 and 150 iterations for the wine glass, wheel
rim, and chair models, respectively, as shown in Figure 4, 5 and
6. The plots for U(T ) versus the number of iterations can be
seen in Figure 7. No improvements were observed in the cost
function U(T ) after some iterations.

The results for the design clustering are represented in the
dendrograms, as shown in Figure 8. Recall that the decision on
the selection for an optimal value of K is made using the Elbow
partitioning method. Figure 9 (a), (b) and (c) shows the plots for
the number of clusters versus total within sum of square (WSS)
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Figure 4: Design alternatives generated for the wine glass model.

Figure 5: Design alternatives generated for the wheel rim model.

for the wine glass, wheel rim and chair models, respectively.
According to the plots, K is selected as 11, 12 and 15, respec-
tively, for the glass, rim and chair models. After clustering, the
designs in each cluster were sorted based on the furthest-point-
sorting algorithm. The sorting results of all three models are
shown in Table 2. Afterward, surveys were conducted to learn
the perceptual dissimilarity responses between 55, 66 and 105
cluster pairs for the glass, rim, and chair models, respectively.

Three different surveys were created for three CAD models.
The surveys for the glass and rim model were divided into two

Figure 6: Design alternatives generated for the chair model.

Table 2: Sorting for the glass, rim and chair designs in their clusters

Clusters Wine Glass Wheel Rim Chair

1 17, 21, 32, 28 14, 2, 46, 15, 23 8, 25, 29, 2
2 34, 25, 37, 35, 45 16, 48, 49, 43, 27 18, 33, 13
3 19, 46, 49, 6, 23, 22, 5 20, 32, 18, 50, 11, 17 46, 4, 37
4 47, 26, 2 7, 35, 34, 45, 5, 3 17, 41
5 4, 29 4 44, 50, 42, 16, 24
6 9, 3, 27, 42, 44, 13 19, 26, 42, 25, 41 28, 19, 3, 43
7 15, 41, 50, 7, 24, 31 8, 9 31, 6, 49, 47
8 14, 38, 11, 18 40, 36 26, 40
9 20, 39, 33, 48, 16, 12 6, 28, 31, 38, 12 30, 48, 27, 12, 23
10 43, 36, 1 33, 22, 10, 44, 13, 29 1, 11
11 40, 8, 10, 30 1, 39, 24, 47 10, 14
12 1, 39, 24, 47 37, 21, 30 9, 5, 15
13 - - 7, 21, 35, 39
14 - - 45, 20, 34
15 - - 32, 22, 36, 38
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Figure 7: The plots showing the cost U(T ) versus number of S-TLBO iterations for the models, respectively, in Figure (a) 4, (b) 5, and (c) 6.

Figure 8: Dendrogram for the design clustering of the wine glass (a), wheel rim
(b) and chair (c) design alternatives.

parts, and the survey for the chair model was divided into four
parts due to its high number of cluster pairs and to achieve reli-
able results from the subjects. The survey for each model was
conducted with 50 different subjects selected from the AMT.
As mentioned in the section 4.3, the subjects having unreliable
results were eliminated. The elimination rate, which is the per-
centage rate of the number of subjects got rejected over the total
number of subject that participated, for the rim, glass and chair
surveys was 36.7%, 44.4%, and 23%, respectively. The non-
linear regression was performed, as described in section 4.3,
to estimate the weights in the psycho-physical distance metric
(see Equation 9). Table 3 includes the RSS values and com-
puted weights corresponding to each geometric parameter for
the three CAD models. Equation 11, 12 and 13 are the psycho-
physical distance between design p and q of wine glass, wheel
rim and chair models, respectively. Later, the space-filling de-
sign alternatives for these models can be created using psycho-
physical distance-based potential energy U(W) in Equation 10.

Figure 9: Plots for number of clusters vs. total within sum of square (WSS) for
the wine glass (a), wheel rim (b) and chair (c) models, respectively.

Hpq = 0.2306 × (hp,0 − hq,0)2 + 0.3582 × (wp,0 − wq,0)2+

0.2174 × (hp,1 − hq,1)2 + 0.2961 × (wp,1 − wq,1)2+

0.1884 × (hp,2 − hq,2)2 + 0.6310 × (wp,2 − wq,2)2+

0.0735 × (hp,3 − hq,3)2

(11)

Hpq = 0.3374 × (bp,0 − bq,0)2 + 0.1147 × (lp,0 − lq,0)2+

0.9874 × (bp,1 − bq,q)2 + 2.60E − 5 × (lp,1 − lq,1)2+

0.2913 × (θp − θq)2 + 0.1819 × (rp,0 − rq,0)2+

0.8321 × (rp,1 − rq,1)2 + 0.0841 × (rp,2 − rq,2)2

(12)
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Table 3: Weights for the geometric parameters coefficient of psycho-physical
distance metric in Equation 9 for the three test models.

Weights Test Models

Wine Glass Wheel Rim Chair

W1 0.2306 0.3374 0.1574
W2 0.3582 0.1147 0.0215
W3 0.2174 0.9874 0.5351
W4 0.2961 2.60E-5 0.4394
W5 0.1884 0.2913 0.0619
W6 0.6310 0.1819 0.0201
W7 0.0735 0.8321 0.0495
W8 - 0.0841 0.0596
W9 - - 0.2585
W10 - - 0.1228
W11 - - 0.0727
W12 - - 0.3521
RS S 0.3119 0.6582 0.5342

Hpq = 0.1574 × (sp,0 − sq,0)2 + 0.0215 × (sp,1 − sq,1)2+

0.5351 × (sp,2 − sq,2)2 + 0.4394 × (sp,3 − sq,3)2+

0.0619 × (sp,4 − sq,4)2 + 0.0201 × (hp,0 − hq,0)2+

0.0495 × (hp,1 − hq,1)2 + 0.0596 × (hp,2 − h2,q)2+

0.2585 × (hp,3 − hq,3)2 + 0.1228 × (tp,0 − tq,0)2+

0.0727 × (tp,1 − tq,1)2 + 0.3521 × (tp,2 − tq,2)2

(13)

5.2.1. Cross-validation
We utilized k-fold cross-validation [65] to validate the ac-

curacy of the mathematical model of the psycho-physical dis-
tance metric computed. The dataset was partitioned into kc

groups/folds, and one fold was used for validation/test and the
remaining kc−1 groups were used as the training dataset to cal-
culate the psycho-physical distance metric. The dissimilarity
responses for the validation dataset were then predicted using
the psycho-physical distance metric obtained from the training
dataset. The root-mean-square-error (RMSE) was calculated
using Equation 14 for the actual and predicted response values.

RMS E =

√∑g
i=1(Yi − Y ′i )2

g
(14)

Here, Yi and Y ′i are, respectively, the actual and predicted re-
sponse values for the validation dataset consisting of a g num-
ber of observations. The cross-validation process was repeated
kc-times while taking each kc fold as a validation dataset. After
obtaining kc results of W and RMSE from the folds, the final
estimation of W and values of RMSE were calculated by aver-
aging all kc weight coefficients and RMSE values.

In this work, kc was set to 5 for the glass and chair mod-
els, and it was set to 6 for the rim model. The mean RMSE of
the glass, rim and chair models is 0.0981, 0.0786 and 0.0694,
respectively. The small RMSE values indicate that our psycho-
physical distance metric can reliably involve the human percep-
tion about the design dissimilarities.

Furthermore, to validate the performance of the proposed
nonlinear regression technique, we have compared its RMSE
values with those obtained from the linear regression and Gen-
eralized Regression Neural Networks (GRNN) [66]. Table 4
shows the RMSE values for the methods. It can be observed
that the RMSE values of the nonlinear regression are less than
those of the linear regression and GRNN for the rim and chair
models, whereas the values for the methods are approximately
same for the glass model. Therefore, the nonlinear regression
was chosen in this work.

Table 4: Comparison between linear regression, nonlinear regression and
GRNN for glass, chair and rim models

Methods Root Mean Square Error

Glass Rim Chair

Linear Regression 0.0937 0.1363 0.0829
Proposed Nonlinear Regression 0.0981 0.0786 0.0694
GRNN 0.0919 0.1631 0.1155

5.3. Comparative study

The space-filling quality of the designs generated based on
Euclidean and psycho-physical distances are investigated in this
section. An additional user study was conducted to compare the
space-filling performance of the Euclidean and psycho-physical
distance-based design exploration. If the space-filling poten-
tial energy of the design alternatives generated using psycho-
physical distance-based design exploration is less then that of
Euclidean distance-based design exploration (i.e., S-TLBO),
the designs obtained from the former metric have better design
diversification. Fifteen designs were generated for the glass,
chair, and rim models. Dissimilarity ranks between the

(
15
2

)
de-

sign pairs of the Euclidean and psycho-physical distance-based
exploration were learned in this user study. Similar to the pre-
vious user study, the seven-point Likert scale was also utilized
here, with anchor ranging from 1 (”Very Similar”) to 7 (”Very
Dissimilar”). The design pairs from both techniques were shuf-
fled with the duplication of 10% of total designs to measure the
reliability of the subjects’ response. In this study, 50 subjects
were involved, who had no knowledge of the techniques used
to sample the designs. Here, the elimination rate of the subjects
was 16.6%, 24% and 10.7% for the rim, glass and chair mod-
els. After obtaining the dissimilarity ranks, the space-filling for
the designs obtained from both techniques was calculated with
Equation 15 by using the subjects’ ranks as distances between
the designs. In Equation 15, Rpq denotes the dissimilarity rank
between designs p and q given by the subject.

U =

N−1∑
p=1

N∑
q=p+1

1
Rpq

(15)

Figure 10 (a), (b) and (c) shows the designs obtained, re-
spectively, for the wine glass, wheel rim, and chair models us-
ing S-TLBO (which uses Euclidian distance metric for design
exploration) and the proposed approach (in which designs are
explored using psycho-physical distance metric). The designs
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generated by these techniques were compared in the compara-
tive study. For the proposed approach, the design exploration
process stopped at the 220th, 150th and 250th iterations for the
wine glass, wheel rim and chair models, respectively (see Fig-
ure 11). The plots in Figure 12 shows the space-filling val-
ues for the design alternatives in Figure 10, which were cal-
culated with the dissimilarity ranks (Rpq) in Equation 15. In
these plots, underlined numbers are the subjects who responded
that S-TLBO generated better space-filling designs than pro-
posed approach. In the case of the glass, wheel rim and chair
models, according to 38, 40 and 49 subjects among 50, respec-
tively, space-filling for the designs generated using proposed
technique was better than that of S-TLBO. From the results of
the user study, it can be concluded that the designs obtained
using psycho-physical distance-based exploration had more vi-
sual variations compared to those generated using S-TLBO.

Figure 10: Design alternatives of the wheel rim (a), chair (b) and wine glass (c)
models generated via Euclidean and psycho-physical distance-based S-TLBO.

We also conducted a statistical test, called Friedman Test,
to check whether there is a significant difference between the
space-filling of the designs generated using Euclidean and
psycho-physical distance-based S-TLBO. The Friedman test is
a nonparametric statistical test [67], and one of its primary mer-
its being that it does not get affected by the dataset distribution
compare to the other statistical test like t-test, which is appro-
priate only if the dataset is normally distributed. In the Fried-

man test, two hypotheses the null hypothesis H0 and alternative
hypothesis H1 are defined. H0 states that there is no signifi-
cant difference between space-filling obtained for the designs,
H1 states that there is a significant difference between the two
approaches. In this test, a χ2 and p-values provide informa-
tion about whether a statistical hypothesis test is true. If the
p-value is less than 0.05 and the value of χ2 is greater than the
χ2-critical, there is strong evidence against H0. Table 5 pro-
vides the results of the Friedman Test for all three test models.
For the glass, rim and chair models, the p-values are less than
0.05 and χ2 values are greater than χ2-critical. These results
showed strong evidence against H0, thereby indicating a sig-
nificant difference between space-filling from the two sampling
techniques.

Table 5: Statistical and Friedman test results for the design alternatives used in
the comparative survey.

Wine Glass Wheel Rim Chair

p-value 0.003283 3.43E-5 1.14E-11
χ2 8.6429 17.163 46.08
χ2-critical 3.84
µ 24.24 26.16 26.03
σ 4.95 7.62 4.83
S kewness 0.75 1.33 0.55

6. Conclusions and future works

This paper proposed a psycho-physical generative design ap-
proach for design exploration for CAD models. The proposed
approach involves the users’ psychological judgment about the
design variations in the design space exploration via a psycho-
physical distance metric. To extract this metric, a user study
was conducted, in which pair comparison was utilized to ask
subjects to rank their perceptual response about the shape dis-
similarities between the design clusters. The nonlinear regres-
sion analysis was performed using the teaching-learning-based
optimization technique to link the subjects’ dissimilarity re-
sponses with the geometric parameters, and a psycho-physical
distance metric was obtained. Finally, a comparative survey
was conducted to compare the performance of the Euclidean
and psycho-physical distance-based S-TLBO regarding creat-
ing variant design alternatives.

As a future work, we would like to develop a psycho-physical
distance based interactive technique to make users involved in
the design exploration process. We are also planning to estab-
lish a large dataset for CAD models and construct a psycho-
physical distance metric for each model. Finally, a similar
methodology will be utilized to create a user-centered gener-
ative design technique for parametric exploration of 3D ani-
mated characters.
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