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Abstract 

The transportation sector accounts for about a quarter of global energy consumption and 
energy-related carbon emissions.  To design and realize sustainable urban transportation, it is 
vital to understand and analyze interactions between a set of dynamic factors that shape 
transportation patterns, behaviors, and impacts. To this end, this study aims to develop a 
systems dynamics (SD) model for Istanbul, Turkey to simulate its urban motorized passenger 
transport system for analyzing numerous policies under different scenarios and assessing their 
potential effects in reducing energy consumption and CO2 emissions in the upcoming years. 
The constructed SD model includes four subsystems: population, household disposable income, 
transport, and energy and CO2 emissions. Based on historical data (2000-2015) and model 
validation processes, the energy consumption and the associated CO2 emissions from motorized 
passenger transport are forecasted for the following scenarios. The first one is business as usual 
scenario (BAU) which is designed to show how energy use and the associated CO2 emissions 
would evolve over time with the current development plans. The second and third scenarios 
constitute supply management measures (SMM) which consider different levels of 
improvements in the fuel economy of the vehicle fleet and reduced carbon emission intensity 
in electricity generation through increased share of renewable energy use. The fourth and fifth 
scenarios consider travel demand management (TDM) policies that include different levels of 
transport cost increase, and trip length reduction. Finally, the last two scenarios include 
integrated scenarios that are composed of the SMM and TDM options. In detail, compared to 
the BAU scenario, integrated scenario considers (1) a 10% improvement in the fuel economy 
of the vehicles, (2) a 10% reduction in the emission intensity of electricity generation, (3) a 
30% increase in the transportation cost, and (4) a 15% reduction in the trip lengths. Under the 
BAU scenario, the SD model shows that energy consumption per capita from passenger trips 
will increase from 183 liters of oil equivalent in 2016 to 315 liters of oil equivalent in 2025 
while the associated CO2 emissions per capita will increase from 460 kg in 2016 to 807 kg in 
2025.  To combat this dramatic growth, the findings indicate that the ambitious integrated 
scenario achieves the lowest energy consumption and CO2 emissions by offering a 33.5% 
expected reduction in total energy consumption and a 32.8% expected reduction in total CO2 
emissions.  
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Highlights 

• Development of system dynamics model for Istanbul passenger transport network 

• Several supply-side, demand-side, and integrated policy scenarios are generated using cost, 

emission, and trip-related parameters 

• Policies are evaluated based on transport energy consumption and CO2 emissions for 

Istanbul until 2025. 

• Integrated policies perform the best and lead to nearly one-third of energy and carbon 

emissions compared to business as usual case. 
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1. Introduction 

Sustainable transportation is one of the essential elements of sustainable development as the 
transport sector is a major consumer of fossil fuels and a primary source of carbon emissions. 
Moreover, the transport sector leads to undesirable impacts such as land degradation, traffic 
congestion, air pollution, and the interruption of natural life. In 2014, the transport sector 
accounted for 26% of the world’s total energy consumption and a similar proportion, 
approximately 22%, for the energy-related greenhouse gas emissions (IEA, 2016). In other 
words, 64% of the global primary oil consumption was used to meet 92% of the total energy 
demand in the transport sector (IEA, 2016). On the other hand, it is expected that final global 
fuel consumption will increase from 9,425 mtoe/year in 2014 to 12,244 mtoe/year by 2040 if 
no new or alternative supporting measurements are implemented as declared by the Paris 
Agreement (IEA, 2016). Similarly, the share of the transport sector in final fuel consumption is 
projected to reach 28% during the same period. This additional increase is triggered by several 
factors including projected population and economic growth and global trends towards 
urbanization and motorization rates. Furthermore, a sizable growth in transport-related energy 
consumption is expected in developing countries such as China, Brazil, India, Indonesia, 
Mexico, and Turkey (IEA, 2016).  

Table 1: Top 20 cities with the worst traffic conditions at Tom-Tom Traffic Index (TOMTOM, 2016; UN-Habitat, 2016) 

Rank City Population 
(million) 

Congestion 
Level Rank City Population Congestion 

Level 

1 Mexico City 
(Mexico) 21.1 66% 11 Changsha (China) 3.9 45% 

2 Bangkok (Thailand) 9.4 61% 12 Los Angeles (the U.S.) 12.3 45% 

3 Jakarta (Indonesia) 10.5 58% 13 Moscow (Russia) 12.3 44% 

4 Chongqing (China) 13.7 52% 14 Guangzhou (China) 13.1 44% 

5 Bucharest (Romania) 1.9 50% 15 Shenzhen (China) 10.8 44% 

6 Istanbul (Turkey) 14.4 49% 16 Hangzhou (China) 9.2 43% 

7 Chengdu (China) 7.8 47% 17 Santiago de Chili (Chile) 6.5 43% 

8 Rio de Janeiro 
(Brazil) 13.0 47% 18 Shijiazhuang (China) 3.4 42% 

9 Tainan (Taiwan) 1.9 46% 19 Buenos Aires 
 (Argentina) 15.3 42% 

10 Beijing (China) 21.2 46% 20 Kaohsiung (Taiwan) 2.7 41% 

A historic milestone was achieved in 2007 when the global urban population surpassed the rural 
population for the first time (UN-Habitat, 2012). As of 2016, around four billion people live in 
cities and towns of which 512 cities have a population of at least one million inhabitants (UN-
Habitat, 2016). More importantly, 31 of these cities have reached megacity status: an urban 
settlement hosting over ten million inhabitants (UN-DESA, 2014). Noting that there were only 
two megacities in 1950, most of today’s megacities have evolved from the developing world as 
a result of rapid urbanization and population growth. It is also projected that another ten cities 
from the developing world will be added to the list of megacities by 2030 (UN-DESA, 2014). 
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The problems associated with increased urbanization rates such as inequity, inequality, poverty, 
inadequate housing and basic services such as clean water, electricity, heating/cooling, 
education and health, and pollution of all kinds become characteristics of megacities (Sorensen 
and Okata, 2010). For example, 27 megacities in 2010 were responsible for 9% of the global 
electricity usage, 10% of the gasoline consumption, 13% of the solid waste despite constituting 
6.7% of the global population (Kennedy et al., 2015). Furthermore, in terms of urban 
transportation, megacities are with the worst traffic congestion conditions and 2016 rankings 
are reflected in Tom-Tom traffic index– a navigation company which releases an annual traffic 
congestion index for around 400 cities across the world (TOMTOM, 2016). Top 20 cities with 
the highest traffic congestion levels are presented in Table 1. Therefore, developing innovative, 
sound and long-lasting solutions to the challenges of megacities, especially in the developing 
world, is highly critical to reduce the pressure on the human health and quality of life, depletion 
of energy resources, and CO2 emissions in addition to providing better living standards and 
livable cities for their inhabitants. In order to achieve low-carbon city development goals, 
various transport policies can be employed to tackle the increasing levels of energy 
consumption and CO2 emissions. These include investment in technological progress such as 
alternative fuel vehicles or vehicle fuel economy improvement, expansion of public transport 
services, more investment in active transport, promotion of the use of greener modes and 
vehicles, encouragement of trip sharing and chaining, and discouragement of car use through 
travel demand management (TDM) policies. In addition, better land use management and urban 
planning policies also reduce overall travel demand. Given that each urban area has distinctive 
economic, spatial, demographic, and transport characteristics, the success of such policies, 
when implemented, varies from one city to another. It is noteworthy that sustainable urban 
transportation is not only a technical issue, but it also requires harmonization between 
organizations, decision-makers, society, and development actions by considering the 
interactions between people, nature, infrastructure, and technology. This requires understanding 
the dynamics of transportation to make reasonable projections under different scenarios. Thus, 
a systematic approach covering the urban transport sector from numerous aspects is needed to 
examine the effects of various transport policies. 

Many complex systems such as the structure of a corporation, urban area, economic processes, 
or transport sector are constituted by a variety of variables which makes it difficult for decision-
makers to analyze, predict, manage and control. System dynamics (SD), originally called 
industrial dynamics, is a methodology developed by Prof. Jay Forrester in the late 1950s to 
examine such large-scale, complex socio-economic systems (Forrester, 1958). SD provides a 
simulation platform to make integrated assessments and policy decisions under different 
scenarios over time (Saeed, 1994). Although early SD applications were mainly limited to 
industrial management, it has been applied to various fields throughout the years. Such fields 
include government policy (Forrester et al., 1976), healthcare (Homer and Hirsch, 2006; Lane 
et al., 2000; Royston and Dost, 1999), the automotive industry (Hayter, 1997; Kumar and 
Yamaoka, 2007), the electrical power industry (Ford, 1997), and urban studies (Duran-Encalada 
and Paucar-Caceres, 2009; Dyson and Chang, 2005; Forrester, 1970; Han et al., 2009).  

In the mid-90s, SD was particularly suggested for the first time as a well-suited approach to 
strategic policy analysis and a support tool for decision making processes in the field of 
transportation (Abbas and Bell, 1994). Since then, numerous studies have proposed and applied 
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SD models for various purposes in the field (Shepherd, 2014). These studies vary extensively 
focusing on different aspects of transportation such as alternative fuel vehicles (Kwon, 2012; 
Onat et al., 2016; Stepp et al., 2009; Struben and Sterman, 2008), effect of resource allocation 
policies on urban transport diversity (Feng and Hsieh, 2009), linkage of transport development 
and land use (Shen et al., 2009), evaluating applications on traffic safety policy (Goh and Love, 
2012), urban traffic and its parking related states (Cao and Menendez, 2015), air passenger 
demand forecasting (Suryani et al., 2010), impacts of rail transit system on metropolitan regions 
(Yang et al., 2014), highway sustainability (Egilmez and Tatari, 2012), intercity transportation 
(Han and Hayashi, 2008; Lewe et al., 2014), congestion pricing scheme (Liu et al., 2010; 
Sabounchi et al., 2014), and traffic congestion and air pollution linkage (Armah et al., 2010).  

There are only a handful of studies in terms of energy use and associated emissions in urban 
transportation. These studies can be categorized into two main groups: (1) studies that employ 
preexisting SD models; and (2) studies that propose a new model specifically developed for 
their study contexts. The preexisting models for the first group include Metropolitan Activity 
Relocation Simulator (MARS) and For Future Inland Transport Systems (ForFITS). MARS is 
a dynamic land use and transport interaction model, which is capable of analyzing various 
transport policies at the city and regional levels (Pfaffenbichler et al., 2010). Pfaffenbichler et 
al. (2010) introduced the concepts underlying the model, MARS, and provided some examples 
of the model to show how the initial model developed for Vienna could be transformed to apply 
in another city, Leeds. When setting up a new model, the model requires a significant amount 
of data for calibration such as housing cost, income, living space, and share of owner-occupiers. 
Along similar lines, ForFITS, the product of the UN Development Account (UNDA), was 
developed to estimate transport emissions, and evaluate transport policies for CO2 emissions 
mitigation (Andrejszki et al., 2014). While the model is suitable for the analysis of local, 
regional, and national transport systems, its primary focus is on national systems. As an 
example study to the local level, Menezes et al. (2017) used ForFITS to evaluate low-carbon 
urban development strategies for the transport sector in a Brazilian megacity, São Paulo. Their 
motivation to use ForFITS was to demonstrate the usefulness of the tool in the context of a 
megacity and produce internationally comparable results.  

Using preexisting simulation models offers the following advantages. First, it is more time-
efficient than developing a new model. Second, a team of experts in the field developed these 
models, so researchers can benefit from such built-in knowledge. Third, the models enable the 
researchers to compare its results with other cities on which similar studies conducted using 
such models, as it is not the case for the new models specifically developed for a study context. 
On the flip side, there are several disadvantages of using preexisting simulation models. Firstly, 
it may not always be possible to capture the characteristics of the study accurately because there 
is not much room to modify and change the built-in hypothesis and assumptions underlying 
preexisting models. Secondly, preexisting models require a significant amount of data to 
calibrate the model for a new study area. However, the data availability and collection standards 
are problematic for many cities across the world, which is another critical barrier in employing 
these models for every study context.  

Studies that propose a new model specifically developed for their study contexts could be 
divided into two categories. The first category consists of the studies include urban 
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transportation system as a subsector to study a broader sector. For example, the transport sector 
along with industry, agriculture, service and residence sectors are used to model the urban 
energy consumption and CO2 emissions trends for the city of Beijing, China over the time 
period of 2005–2030 (Feng et al., 2013). Similarly, another model is proposed to estimate 
behavioral parameters affecting air pollution in Tehran, Iran by considering the sectors of urban 
transportation and air pollution industries (Vafa-Arani et al., 2014). Other studies can also be 
considered in this category include the study of (Fong et al., 2009) which proposes an SD model 
as a decision making tool to be adopted in the urban planning process on the case of Iskandar 
Development Region of Malaysia, and the study of (Du et al., 2018) in which the transport 
sector is studied along with the other seven sub-sectors for the case of Shanghai, China to 
evaluate carbon emissions trends during the period of 1991-2015, from the perspective of an 
urban planning system. Developed primarily at the city level covering numerous sectors in 
addition to the transport sector, these models often lack sufficient detail to capture the 
characteristics of the transport sector adequately. Therefore, these models may not seem 
appropriate to test the possible impacts of certain transport policies in terms of energy 
conservation and CO2 mitigation in an urban setting. 

To bridge the gap, new models with a primary focus on urban transportation system have been 
evolving, which are considered under the second category. Haghshenas et al. (2015) developed 
an SD model based on world cities data to analyze sustainable transportation dynamics for 
Isfahan, Iran, to evaluate different transportation development scenarios. While trip generation, 
modal share, transportation supply and equilibrium between supply and demand were the key 
modules of the developed model, the key outputs of the model involve various economic, social 
and environmental indicators including transportation energy consumption and associated air 
pollution. One of the main contributions of the paper was the developed database based on the 
existing global databases because most of the databanks in the field are in disorder and limited 
to city reports. Along the same line, another model is presented to explore the potential of 
different policy options in reducing vehicle fuel consumption and mitigating CO2 emissions for 
Kaohsiung City in Taiwan with a time frame from 1995 to 2025 (Cheng et al., 2015). This 
model considers urban road transport modes including city buses, light-heavy trucks, 
motorcycles, and passenger cars, and utilizes vehicle miles traveled and a number of vehicles 
for each mode to calculate associated energy consumption and CO2 emissions. One of the main 
difference of the paper compared to the previous studies is that the authors considered 
household disposable income over Gross Domestic Product (GDP) per capita in their model, 
which is believed to be a better indicator in reflecting the economic factors on car ownership 
levels (Wu et al., 2014).  

In reference (Xue Liu et al., 2015), a model was built for Beijing, China with a particular focus 
on urban passenger transport based on the number of trips by each mode available in the city. 
A scenario-based analysis of numerous policy options was made for urban passenger transport 
energy consumption and CO2 emissions for the time period from 2002 to 2020. This model 
includes four different subsystems: an economy subsystem, a population subsystem, a transport 
subsystem based on trips generated by each transport mode, and energy consumption and CO2 
emissions subsystem. In another study for Beijing, a different model was constructed to study 
the impact of different strategies on urban traffic’s energy consumption and carbon emissions 
(Wen and Bai, 2017). Although both models were built for Beijing’s urban transport system 
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and there are several overlaps, their structures were designed differently. Because they intended 
to test different policies thus requiring a different setting to include specifically tailored 
variables for those policies. In addition, for the case of Latin America, a similar model was 
presented to estimate passenger transport emissions of local pollutants and CO2 by integrating 
land use and transport sectors for Bogota, Colombia within the time period from 2010 to 2026 
(Guzman and Orjuela, 2017).  

All of these studies have selected an urban area to test their proposed SD model. One apparent 
reason behind this is that each urban area has distinctive spatial, demographic, and transport-
related characteristics. Hence, a specific model based on the scope of the research problem is 
usually required. Given the complexity of transport dynamics in large cities, it is still believed 
that there is still limited research on energy consumption and the associated emissions from 
urban passenger transport and this context is not well understood; thus, more efforts are needed 
(Li et al., 2018; Xi Liu et al., 2015). To the best of the authors’ knowledge, Istanbul is such a 
place where the impact of transport policies on energy consumption and CO2 emissions levels 
have not yet been studied sufficiently. Therefore, any attempt to investigate transport system of 
such a large city from these aspects is highly beneficial for understanding the dynamics of the 
city and contributes to the existing literature by enriching the SD applications in the field. This 
study provides investigations on passenger transport-related energy consumption and CO2 
emissions in Istanbul, the megacity of Turkey, and focuses on the following research questions: 

Q1. If the status quo is maintained, how will this affect future energy consumption and CO2 
emissions levels? 

Q2. What additional supply-side and demand-side policies should be considered in achieving 
reduced energy consumption and CO2 emissions in Istanbul? 

To this end, a systematic approach covering numerous aspects of the transport sector – which 
include demographics, economic growth, motorization rate, the attractiveness of transport 
modes, energy consumption, and CO2 emissions – is needed to understand the dynamics of 
transportation, examine the effects of various transport policies and make projections under 
different scenarios. SD is identified as such an approach, which has increasingly been used in 
the field. Therefore, this study aims to develop a systems dynamics (SD) model for Istanbul, 
Turkey to simulate its urban motorized passenger transport system for analyzing numerous 
policies under different scenarios and assessing their potential effects in reducing energy 
consumption and CO2 emissions in the upcoming years. 

Overall, the outcomes of this research are intended to contribute to better decision making and 
city planning in Istanbul, and consequently, help Turkey to meet its Paris Agreement goals as 
well as achieve better urban life in Istanbul. This research can also help to expand the 
understanding of the problems associated with the energy consumption and CO2 emissions 
from the passenger transport in the context of the other megacities from the developing 
countries. Additionally, the present study contributes methodologically to the field in two ways. 
First, Istanbul comprises a variety of the transport means for passengers (i.e., car, shuttle, bus, 
rail, bus rapid transit (BRT), sea lines, jitney, taxi, and minibus) unlike many other cities; 
therefore, this study will be among the first attempts to consider such a variety of transport 
means in modeling the transport system of a large city. Second, the developed model presents 
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a ‘desire-to-drive ratio’ variable to account for the changes occurred in the travel behavior of 
residents in response to the changes occurring in the transport cost.  

The remaining of the paper is organized as follows. Next section presents the overview of the 
study area and introduces the method for how an urban motorized passenger transport SD model 
for Istanbul was developed with related data acquisition strategies, assumptions and scenarios 
based on the variation of specific parameters. The third section provides and interprets results 
of energy consumption and CO2 emissions of each scenario along with further discussions. 
Finally, the last section presents key conclusions and shortcomings of the research and points 
out potential future research areas.  

2. Methods 
2.1. Overview of the study area: Istanbul, Turkey 

Our study is focused on Istanbul, which is a Turkish megacity, and the economic, financial, 
industrial, and cultural center of the country. Because the city hosts approximately 18% of the 
country’s population, concentrates 27% of national GDP, accounts for 18% of national energy 
use, produces 38% of total industrial output and more than 50% of services, and generates 40% 
of total national tax revenues (EPDK, 2017; OECD, 2008), it is accepted as the most important 
part of the country. Similar to the other megacities of the developing world, Istanbul has 
witnessed a tremendous population and motorization growth in the last few decades. The 
population of Istanbul was just 4.7 million people in 1980, before increasing to 11 million 
people in 2000 and finally reaching 15 million people in 2015. The motorization growth is even 
more dramatic. While the number of vehicles in the city was only 0.2 million in 1980, it first 
increased to 1.25 million in 2000, and then to 3.6 million in 2015. To put it another way, the 
number of vehicles in the city has grown almost six times faster than the population growth in 
the given time period. This uncontrollable growth both in population and the number of vehicles 
has caused severe transport-related problems, and thus overall life quality-related problems. In 
terms of traffic congestion, for example, Istanbul was ranked as the sixth worst city among 390 
cities around the world in 2016 (see Table 1). Additionally, it fared very poorly in the European 
Green City Index, an index which assesses and rates environmental impact of 30 major cities 
in Europe (Shields and Langer, 2009). Istanbul’s overall ranking was 25th in the list in 2009 
with a score of 45.30 out of 100, while it was ranked 23rd for both transport and air quality 
categories, and 29th for environmental governance, the category in which the city scored the 
lowest. 

Table 2: Sustainable Transport Indicators in Turkey (2000-2012) (Turkstat, 2016a) 
 2000 2005 2010 2012 
Total final energy consumption (thousand tons of oil equivalent) 61,556 71,510 83,367 89,008 
Total transport energy consumption (thousand tons of oil equivalent) 12,008 13,849 14,925 20,471 
   Road transport energy consumption 10,509 11,785 13,258 18,525 
Greenhouse gas emissions from transport (thousand tones CO2 equivalent) 35,516 41,307 45,142 ~61,863 
CO2 emissions per inhabitant (tones per capita) 3.5 3.8 4.5 4.7 
Motorization rate (cars per one thousand inhabitants) 69 84 102 114 
Modal split of passenger transport (%) 
    Passenger cars 49.1 55.5 59.3 59.4 
    Motor coaches, buses and trolley buses 47.7 42.1 38.3 38.1 
    Trains 3.2 2.4 2.4 2.5 
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As a signatory of the Paris Agreement, Turkey agreed to do its part to reduce greenhouse gas 
emissions to combat global warming and climate change. When viewed from this aspect, the 
transport sector of Turkey is an important element in this picture. Table 2 presents indicators of 
sustainable transport in Turkey from 2000 to 2012. As depicted in this table, transport share in 
final energy consumption for Turkey has increased from 19% (12,008 toe of 61,556 toe) in 
2000 to 23% (20,767 toe of 89,008 toe) in 2012. More than 88% of transport energy 
consumption is consumed mainly by passenger transport. Moreover, greenhouse gas emissions 
stemming from the transport sector have increased from 35,516 thousand tones CO2 equivalent 
in 2000 to 47,946 thousand tones CO2 equivalent in 2012 with a growth rate of 35%. During 
the same period, CO2 emissions per inhabitant have also increased at a rate of 34%. From the 
viewpoint of Istanbul, the city’s car ownership level is still low (around 168 cars per 1000 
people) when compared to the cities of the developed world (400-500 cars per 1000 people), 
thus resulting in low per-head energy consumption (Turkstat, 2016b). Projections show that the 
number of cars will reach 4.3 million by 2023 (252 cars per 1000 people), which indicates even 
worse energy and carbon emissions figures in the upcoming years along with the other severe 
transport related problems such as traffic congestion (Batur and Koç, 2017; IMM, 2011). 
Therefore, Istanbul’s role is highly crucial for Turkey in this mission of achieving the Paris 
Agreement goals. 

Under the pressure of unbearable traffic congestion, growing energy demand, foreign oil 
dependency, increasing air pollution and other transport-related issues within the city, massive 
investments are required to upgrade Istanbul’s transportation system. Istanbul Metropolitan 
Municipality (IMM) has planned to invest 36 billion USD in the transport system from 2010 to 
2023 in addition to substantial investments made during the last decade (IMM, 2011). With 
respect to this, billions of dollars’ worth of infrastructure and service projects for both public 
transportation and passenger car transport are being realized in the city. Such projects include 
introducing a new BRT network, expanding the railway network from approximately 100 km 
to 420 km by 2019, building the third bridge across the Bosphorus, two undersea tunnels for 
railway and cars, increasing public transport patronage, improving public transportation service 
quality, and promoting public transportation usage. These efforts have been shaping the city’s 
transport figures. In addition to that, travel demand increases in parallel with GDP per capita 
growth in the city. While the number of daily trips was 1.81 per person in 2009, projections 
show that it will increase to 2.03 daily trips per person by 2023 (IMM, 2011). Figure 1 illustrates 
the changing landscape of urban motorized travel modal split for 1996, 2006 and 2012. 
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Figure 1: Modal split of Istanbul in 1996, 2006, and 2012 (Gerçek and Demir, 2008; IMM, 2015) 

2.2. Model formulation 
System dynamics (SD) is a computer-aided approach for understanding the behavior of 
complex systems over time. The SD approach, which is based on feedback control theory, 
utilizes feedback loops, variables, and equations. A closed chain of causes and effects in a 
bounded system is defined as the feedback loop. The variables can be classified in two ways: 
(1) stock (level), flow, and auxiliary variables; and (2) endogenous (i.e., arising from within) 
and exogenous (i.e., arising from without). In the first classification, (1) stock (level) variable 
is the one that accumulates a flow over continuous time periods; (2) flow variable is the one 
that represents the rates of increase or decrease in stock variables during a time period; (3) 
auxiliary variable is the one that identifies flow variables. In the second classification, 
endogenous variable is a dynamic variable involved in the feedback loops of the system whose 
value is determined by the states of other variables in the system; for example, changes in 
population or economic conditions of a city can be used to explain the changes in travel demand. 
On the contrary, an exogenous variable is a component whose value is not directly affected by 
the system but determined by factors or variables from outside the boundary of the system. For 
example, changes in population are affected by many factors including birth rates, death rates, 
migration rates, so such factors can be treated as exogenous variables. These variables are 
linked by different equations in the form of integral, differential or other types. 

2.2.1. System boundary 
The focus of this study is the problems associated with the increasing CO2 emissions trend in 
Istanbul, Turkey. Due to various reasons such as increasing energy consumption in transport, 
motorization rate and travel demand, CO2 emissions caused by the transport sector in Turkey 
exhibit an increasing pattern in the last decade (see Table 2). Istanbul constitutes the main 
contributor to this increase because, as of 2016, it accommodates 18% of the total population 
of Turkey and 24% of its total registered cars (Turkstat, 2016c, 2016b). There are many factors 
affecting CO2 emissions in the transport sector such as population, economy, travel demand, 
modal share, and energy consumption (Timilsina and Shrestha, 2009). Hence, these main 
parameters are identified prior to the construction of the causal loop diagram (CLD) in the light 
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of the research objectives, data availability and the previous studies in the field (Cheng et al., 
2015; Egilmez and Tatari, 2012; Xue Liu et al., 2015). The data between 2000 and 2015 was 
analyzed to calibrate and verify parameters to use in our simulation model for the period 
between 2015 and 2025. The overview of these parameters is given in Appendix B. After 
identification of parameters, the next step in modeling was to construct CLD. Vensim 7.0 
software was used to construct CLD and further diagrams and analysis for this study (Vensim, 
2017). The constructed CLD is given in Figure 2, which shows cause and effect relationships 
among the parameters. The relationships are determined by feedback loops according to the 
existing literature in the field (e.g., Cheng et al., 2015; Guzman & Orjuela, 2017; X. Liu et al., 
2015). Each arrow indicates the influence of one parameter on another where a positive (+) sign 
indicates positive relation such that an increase (or decrease) in one element causes an increase 
(or decrease) in another element. Similarly, a negative (-) sign indicates a negative relation such 
that an increase (or decrease) in one element causes a decrease (or increase) in another element. 
In other words, a positive sign indicates reinforcing impact whereas a negative sign indicates a 
balancing effect. In addition to that, a solid line in CLD is a direct relationship while a dotted 
line is an inverse (information based) relationship. Accordingly, the following causal loops have 
been considered within our system boundary, where the arrows indicate the direction of causes 
from one element to another:  

• Economy → Household disposable income → # Car → Car trips → Energy 
consumption → CO2 emissions → Economy 

• Economy → Household disposable income → Passenger travel demand → Car trips → 
Energy consumption → CO2 emissions → Economy 

• Economy → Household disposable income → Passenger travel demand → Public 
transport trips → Car trips → Energy consumption → CO2 emissions → Economy 

• Economy → Household disposable income → Passenger travel demand → Public 
Transport trips → Energy consumption → CO2 emissions → Economy 
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Figure 2: Causal Loop Diagram 

2.2.2. System structure 
After identifying the system boundary, the next step is constructing the system structure. In 
order to that, first, sub-models are developed for the parameters. Population and household 
disposable income might be affected by changes in overall travel demand and trip making 
characteristics and consequent changes in energy consumption and associated emissions. 
However, these feedbacks are likely to be small over the selected time horizon; thus, population 
and household disposable income are assumed as exogenous variables and detailed sub-models 
are not included. Other parameters are defined as endogenous, so detailed sub-models are 
included in the model with stock (level), flow and/or auxiliary variables as required. 
Accordingly, the stock and flow diagram, which is the quantitative analysis model of the system 
based on the identified causal loops, is constructed (see Appendix A). In total, our model 
consists of 9 stock (level) variables, 9 flow variables, and 70 auxiliary variables. Breaking down 
a system into multiple subsystems is an easy way to convey its hierarchical structure. With 
regards to this, our model can simply be divided into four subsystems: population, household 
disposable income, transport, energy consumption, and CO2 emissions. 

Population subsystem 
The population of Istanbul has increased from approximately 11 million people in 2000 to 15 
million in 2015, and it is expected that it will surpass 17 million people by 2025 (Turkstat, 
2016c). In our model, the population is considered as an exogenous variable. The look-up table 
approach is employed to input the population information into the model. In addition to that, 
the floating population into the city has been, on average, 40 thousand per annum in the last 
decade (Turkstat, 2016c), and thus an extra variable is not included for it. Instead, it is reflected 
as embedded in the population growth rate.  

Household disposable income subsystem 
Economic conditions of a city and its residents play an essential role in their mobility behaviors. 
In respect of personal car ownership, in particular, it is widely accepted that people tend to own 
a car when their income increases (Dargay et al., 2007). In Istanbul, the number of cars per 
thousand people has increased from 106 in 2000 to 168 in 2015 and it is expected to grow to 
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the level of 252 cars per thousand people by 2023 (see Figure 3). Household disposable income 
and GDP per capita are two of the many key economic indicators to gauge the overall state of 
the economy. To reflect economic factors in our model, household disposable income is 
considered over GDP per capita in line with earlier studies (Cheng et al., 2015; Huo and Wang, 
2012). Because GDP per capita may fall short of accurately measuring people’s living 
standards, and thus growth in household income may evolve differently from GDP per capita 
(Boarini et al., 2006). Yet, it should be also noted that there is a strong correlation between 
household income and GDP per capita (Boarini et al., 2006). With regards to this, household 
disposable income is considered as an exogenous variable and include in our model as a stock 
variable which depends on the growth rate of GDP (Dargay et al., 2007). Furthermore, the 
growth rate of GDP is included in our model because the future projections on the economic 
conditions of Istanbul are only available on the growth rate of GDP, which is necessary to 
enable our model for making future projections towards the research objectives. GDP growth 
rates and household disposable income data has been obtained from the Turkish Statistical 
Institute (Turkstat, 2016d) and the Economic Policy Research Foundation of Turkey (TEPAV, 
2016). As for the future outlook, GDP of Istanbul is estimated to grow with an annual rate of 
4.2% by 2025 (PWC, 2009). In addition to these, the look-up table approach in Vensim is 
employed to reflect the GDP growth rate on household disposable income in our model. 

 

Figure 3: Car ownership levels in Istanbul, Turkey between 2000 and 2015 (Turkstat, 2016b). 

Transport subsystem 
During the last decades, total passenger trip volumes in Istanbul have increased as a result of 
population and economic growth and expanding city area (i.e., urban sprawl). As part of 
Istanbul Transportation Master Plan, it was estimated that the total number of passenger trips 
has increased from 21 million trips per day in 2006 to 24 million trips per day in 2009. By 2023, 
it is expected that total passenger trips will reach 35 million trips per day. In the same time 
period, daily trips per person are expected to increase from 1.74 trips in 2006 to 2.03 trips in 
2023 (IMM, 2011). While the share of motorized trips in total passenger trips were 51% in 
2009, it is expected that it will increase to 74% by 2023. This is mostly because of the fact that 
trip distance has been increasing due to the expansion of the city area; therefore, it has been 
substituted by motorized means, primarily by cars. The share of car trips in total motorized trips 
increased from 19% in 1996 and 26% in 2006 to 28% in 2012 (see Figure 1). It is also expected 
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that this figure will be as large as 40% by 2023 (IMM, 2011). This continuing increase in the 
modal share of car trips has been changing transport figures irrevocably, which has been 
reflected in transport-related problems in Istanbul such as congestion and air pollution. In order 
to combat this challenge, the Istanbul Metropolitan Municipality (IMM) has planned to invest 
in railways, BRT and improving the bus service. Under these vast uncertainties, a transport 
subsystem is included in our model. 

The two most common approaches to construct transport subsystems to estimate energy 
consumption and emissions from urban passenger transport are: (1) using vehicle fleet, vehicle 
kilometer travelled (VKT), fuel economy, and emission rates (Cheng et al., 2015; Egilmez and 
Tatari, 2012) and (2) using number of trips by each mode (modal share), driving distance, 
energy consumption per trip by each mode and emission rates (Lewe et al., 2014; Xue Liu et 
al., 2015). In this study, the second approach is used in constructing the transport subsystem. In 
Istanbul, the transport means for passengers are car, shuttle, bus, rail, sea, jitney, taxi and 
minibus (see Appendix A). For each mode, a stock variable is included in the transport 
subsystem: 

Car trips: The main factor affecting car trips is the number of registered cars in the city and 
annual passenger trips per car. People tend to own a car for various reasons including benefiting 
from more rapid, flexible, comfortable, personalized, and reliable journey cars arguably offer 
compared to the other competing modes, expressing their social status through cars or lacking 
alternative transport options in their neighborhoods. Despite these reasons, studies indicate that 
the number of cars in a city is closely associated with population and income growth (Dargay 
et al., 2007; Stopher, 2004). Let  denote the population and let denote household 
disposable income. Then, the number of cars in the city per annum can be estimated by the 
following linear least-squares regression 

                                                                  (1)  

where  represents number of private cars. Transportation cost is an important factor in travel 
choice of people (Brueckner, 2005). Therefore, a variable, desire to drive ratio, is introduced 
based on a fraction between transportation cost and household disposable income. This variable 
is, then, used to reflect the effect of transportation cost on driving choices in estimating annual 
passenger trips per car. By denoting transportation cost by , the desire to drive ratio  can 
be calculated by  

                                                                                                                              (2) 

If transportation cost increases more than the household disposable income, the desire to drive 
ratio decreases. This means that people are required to allocate more money from their income 
to transportation. On the contrary, if household disposable income proportionally increases 
more than transportation costs, the desire to drive ratio increases. Data for transport cost has 
been obtained from the Turkish Statistical Institute’s annual income and living conditions 
surveys (Turkstat, 2016d), which covers the expenditure on the purchase of both brand new and 
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second hand vehicles, motorbikes, bicycles, spare parts and accessories, fuels and oils, 
maintenance and reparations, passenger transportation fares, and other transport services. In 
addition to that, population ( ) and household disposable income ( ) used to forecast 
annual passenger trips for each year with the following linear regression equation 

                                                    (3) 

where  denotes annual passenger trips forecast. Another important factor in determining 
annual passenger trips per car is total rail and BRT trips because both means provide an 
opportunity for car drivers to escape from traffic congestion. Therefore, it is assumed that rail 
and BRT means are the only PT options in attracting drivers based on the analysis of the past 
trends. In order to estimate annual passenger trips per car that is denoted by , the following 
linear regression formula is used: 

                              (4) 

After all, car trip volumes are estimated based on the product of the number of cars and annual 
passenger trips per car. 

Rail transit trips: Railway is an efficient and sustainable transport option for cities, especially 
for megacities. The length of the railway network in Istanbul was only 40 km in 2000, before 
being extended to 142 km by 2015 as the city had grown in terms of both area and population 
(IMM, 2018a). According to the plans of IMM, it is expected that the railway network of the 
city will be expanded to the total length of 700 km by 2030. This will, of course, have a 
considerable impact on the trip characteristics in the city. Liu et al. (2015) have considered 
initial rail length, rail length increase, initial rail transit passenger trip per km and rail transit 
passengers increase per km to calculate rail transit trips. A similar approach is followed for 
constructing rail trips sector in our model (see Appendix A). The required data for parameters 
of rail transit trips sector has been obtained from the Istanbul Metropolitan Municipality. The 
specific equations and detailed explanations for each parameter are given in Appendix B. 

Bus rapid transit (BRT) passenger trips: Istanbul BRT system, Metrobus, was introduced to the 
city in 2007, and accounts for 4% of the modal split in 2012 (see Figure 1). The system length 
was around 18 km at the beginning, then it has extended to 30 km in 2008, 42 km in 2010, and 
finally 52 km in 2012. Today, it operates on a system which has 8 routes and 44 stations and 
has a fleet size of 535 vehicles (IETT, 2017a). Not only has the system offered an alternative 
travel option to the residents, but it has also contributed to reducing the number of private 
vehicles on roads parallel to the metrobus routes. In addition to that, it is planned to introduce 
an additional 50 km long BRT system to the city by 2020. The same approach with rail transit 
trips is followed in building BRT passenger trips sector in our model. The specific equations 
and detailed explanations for each parameter are provided in Appendix B. 

Bus passenger trips: Istanbul’s bus system remains the main component of the public 
transportation service in the city despite the decline in its share in modal split in the last decades. 
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As of 2016, it accounted for 24% of trip volumes of the entire public transportation system 
according to the statistics of the Istanbul Transport Authority (IETT, 2017b). This is lower than 
its share (32%) in 2006 (IMM, 2011), which is mostly because IMM plans to meet the 
increasing travel demand by railway and BRT options (IMM, 2011). The number of buses and 
routes have nearly been constant in the city over the last two decades. Only frequency and 
number of buses in operation have slightly been changing in order to adjust to the variations in 
trip characteristics. Therefore, the bus passenger trips sector is modeled based on the size of the 
bus fleet in operation and trip growth per bus per year. The details of parameters and equations 
in this sector are given in Appendix B. 

Shuttle passenger trips: Dedicated shuttles to workplaces and schools in Istanbul have been 
very common as address-based school placement or school travel plans are not enforced and 
workplace choice varies considerably, not necessarily based on home location. It accounts for 
19% of the modal split as of 2012. From another perspective, it represents around 32% of total 
home to school and home to workplace trips in 2010 (IMM, 2011). The number of shuttles is 
fixed by the municipality and no further licensing is on the agenda. Shuttle passenger trips is 
considered in our model by including shuttle trips growth rate per year. The future expectations 
and required data have been obtained from the Istanbul Metropolitan Area Transport Master 
Plan (ITMP) as well as from other institutions of IMM. The specific details of this sector in our 
model can be found in Appendix B. 

Minibus passenger trips: The share of minibuses in the total public transportation has decreased 
from 20% in 1996 to 16% in 2012 (see Figure 1). The number of minibuses is also constant in 
Istanbul and currently, there is no plan to register new minibuses (IMM, 2011). The required 
data for this sector has been obtained from ITMP as well as from other institutions of IMM. 
The details of this sector are given in Appendix B. 

Sea passenger trips: Unlike many other megacities, sea lines in Istanbul are quite important 
and have arguably high potential in providing mobility between both sides of Istanbul. Sea 
lines, however, represent only around 2% of the modal split in 2012. Since the opening of an 
undersea tunnel (Marmaray) in 2013 for railways, its share has been slightly decreasing (Çancı 
et al., 2015). However, IMM plans to sustain sea lines in order to meet the increasing travel 
demand of the city. A similar approach to minibus and shuttle sectors is followed in constructing 
the sea passenger trips sector. The required data and future expectations have been obtained 
from the work of Çancı et al. (2015) and IMTP as well as from other institutions of IMM. The 
details are given in Appendix B. 

Taxi and jitney (shared taxi) passenger trips: Trips made by taxi and jitney represent a total of 
4% of the modal split in the city. The number of taxis and jitneys are fixed in Istanbul and there 
is no plan to register new taxis or jitneys so that the increase in these means occurs in line with 
the increase in total passenger trips. No stock variable is included for both sectors; instead, they 
are reflected in our model using auxiliary variables. On the other hand, shared trip platforms 
like Uber are banned in Istanbul so that they are not considered in our model. The required data 
has been obtained from different sources including IMM reports and Bitaksi (an online taxi 
calling platform). The details can be found in Appendix B. 
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Energy consumption and CO2 emissions subsystem 
Car trips and taxi trips are distinguished from the other modes. Our analysis on past data 
indicates that energy consumption per trip by modes, which have fixed routes such as railway, 
BRT and bus, have been constant over the years. On the other hand, modes that do not have 
fixed routes (car, taxi, and shuttle) indicate different levels of energy consumption for each trip, 
thus distance per trip is used to calculate total energy consumption for these modes. Therefore, 
two different formulas are used to estimate energy consumption for each mode. 

The specific formula for car, taxi and shuttle trips is as follows: 

                                                                                                               (5) 

where  provides energy consumption for i’th mode with j’th energy type while  

represents energy consumption per unit distance by i’th mode with j’th energy type;  

represents trip distance by i’th mode; and  represents total number of trips by i’th mode. 

The specific formula for the other modes as follows: 

                                                                                                                       (6) 

where  provides energy consumption for i’th mode with j’th energy type while  

represents energy consumption per trip by i’th mode with j’th energy type, and  represents 
total number of trips by i’th mode. 

After overall energy consumption for each mode is obtained through the relevant calculations, 
the total energy consumption is calculated as follows: 

                                                                                                         (7) 

where  is total energy consumption;  is a conversion coefficient to convert j’th energy 

type to oil; and  is energy consumption for i’th mode with j’th energy type. 

Finally, the following formula is used to calculate total CO2 emissions: 

                                                                                                           (8) 

where  provides total CO2 emissions while  represents emission factor from j’th 

energy consumption and  represents energy consumption for i’th mode with j’th energy 
type. 
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The emissions factor from energy consumption and CO2 emissions and conversion coefficient 
are set according to the Intergovernmental Panel on Climate Change’s (IPCC) guidelines. 
Appendix B includes the specific details of this subsystem along with the coefficient values. It 
is also important to mention that our approach has similarities with the work of Liu et al. (2015) 
in estimating the energy consumption and CO2 emissions. Although both methods have 
similarities, since our work has a different scope, it is found unnecessary to follow the same 
notation. 

2.3. Scenarios  
Elements of mobility and access management for cities are categorized into three main 
categories (Meyer, 1997): supply management measures (SMM), land use management (LUM) 
and travel demand management (TDM) (see Figure 4). SMM include expanding the 
transportation network such as the road and PT network, traffic engineering, technological 
progress such as clean and green vehicles or improved fuel efficiency. LUM is simply 
concerned with how the land is used, and include issues such as construction permits according 
to different sets of human activities to be conducted in the related location. TDM aims to 
influence people to change their travel behaviors or to reduce the need to travel for the desired 
purpose through different sets of soft and hard measures such as fuel tax, congestion charging, 
workplace travel plans, car clubs, and awareness campaigns.  

 
Figure 4: Elements of mobility and access management (reproduced)(Meyer, 1997) 

Of these three groups, SMM policies are arguably the most common response in attempting to 
solve the problems in the transport sector. Much effort for low carbon transitions of the transport 
sector have, therefore, devoted to SMM policies to achieve the GHG reduction goals (Mandell, 
2009; Moriarty and Honnery, 2008). While the large-scale uptake of SMM policies, especially 
low carbon technologies is crucial; many studies, however, come to a conclusion that they alone 
do not lead reduced GHG emissions targets (Bristow et al., 2008; Pye and Daly, 2015). 



17 
 

Therefore, in addition to SMM policies, TDM policies attract much attention because they offer 
significant potential for reducing energy demand by influencing people’s travel behavior in 
such a way that travel demand is reduced or redistributed in space or in time and travel mode is 
shifted to a more sustainable means of transport. Given that each urban area has distinctive 
economic, spatial, demographic and transport characteristics, the success of such policies when 
implemented varies from one city to another. In Istanbul, the role and potential of such policies 
to mitigate traffic congestion issues of the city has been studied (Batur and Koç, 2017); 
however, their potential for reducing energy consumption and GHG emissions have not been 
considered thus far.  

In this regard, this study attempts to fill this gap with a focus on both supply-side measures, 
which include improved fuel economy of vehicles and increasing share of renewables in energy 
source mixture for electricity generation, and demand-side measures, which include increasing 
transportation cost and reduced trip lengths. Within the scope of this study, our scenarios are 
built with policies from supply management and travel demand management because land use 
management is hardly applied to existing cities in a broader context. Before moving to these 
scenarios, first, a business as usual scenario is needed to set in accordance with the current 
development plans so that the effectiveness of the other scenarios can be compared in reference 
to this base scenario. 

2.3.1. Business as usual scenario (BAU) 

The business as usual scenario is set with the current development plans of the city. The details 
of this scenario are as follows: 

• GDP of Istanbul is estimated to grow at a yearly rate of 4.2% until 2025 (PWC, 2009). 

• The population of the city is expected to slightly surpass 17 million by 2025 (Turkstat, 
2016c). 

• It is assumed that the transport cost grows at the same rate as individual disposable 
income, so the desire to drive ratio will be similar to historical patterns. 

• The rail network length is set to increase from 142 km to 502 km by 2025 according to 
IMM (2011). In addition to that, it is planned to expand BRT network from 52 km to 
100 km by 2025 through the construction of another BRT line to be open by 2020. 

• Expected growth rates of all PT means have been obtained from IMM (2011). 

• Expected trip lengths for PT, car, and shuttle means have been obtained from IMM 
(2011). 

• It is targeted that the fuel economy of light-duty vehicles must improve by 3.7% per 
year by 2030. Both historical and expected fuel economy data for light-duty vehicles 
have been obtained from GFEI (2017).  
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• It is assumed that energy consumption per PT trip will remain constant for each means 
in the upcoming years. Since energy is one of the main costs in the public transport 
sector, this assumption is made to ensure the economic viability of PT means. 

2.3.2. Supply-side management measures (SMM) 

Among various supply-side measures, only consider rail emission factor and fuel economy of 
vehicles are considered. Rail emission factor (CO2 emissions per kWh) is considered as 
emission intensity of the electricity generation, which is completely dependent on energy source 
mixture for electricity generation; thus, increasing the share of renewables in this figure would 
contribute to reducing the rail emission factor. On the other hand, technological progress 
directly contributes to improving the fuel economy of vehicles. Although a significant 
improvement is expected on the fuel economy side under BAU scenario, it is assumed that more 
improvements can also be made in this area for Turkey with a different set of policy 
mechanisms over vehicle fleet. Based on these two factors (rail emission factor and fuel 
economy), two levels for SMM scenarios are generated, which are as follows: 

(1) SMM-1: rail emission factor will reduce by 5% from its level in 2015 to 2025 and fuel 
economy of cars, taxis and shuttles will reduce by an extra 5% from its expected level 
in 2025. 

(2) SMM-2: rail emission factor will reduce by 10% from its level in 2015 to 2025 and fuel 
economy of cars, taxis and shuttles will reduce by an extra 10% from its expected level 
in 2025. 

2.3.3. Travel demand management (TDM) 

Travel demand management covers policies including congestion charging, fuel tax, awareness 
campaigns or policies based on different incentives and disincentives to switch from cars to PT, 
walking and cycling, and to control the trip lengths. In our study, transportation cost and trip 
lengths are concerned with only. As some TDM policies aim to increase the cost for 
transportation to reduce the overall demand for travel, transportation cost variable is considered 
in our model to reflect such changes in the cost for transport as a result of the TDM policies 
that are applicable to the city. Similarly, some TDM policies aim to control or reduce trip 
lengths of the city residents, so the overall impact of such policies is considered by reflecting 
their potential changes on trip lengths in our model. Based on these, two levels for TDM based 
scenarios are generated, which are as follows: 

(1) TDM-1: The transportation cost will increase an additional 20% per year from its 
expected level between 2015 and 2025, which will decrease the desire to drive ratio by 
20% over the same period. Trip lengths of cars, taxis, and shuttles will reduce 10% per 
year from their expected levels over the period 2015-2025. 

(2) TDM-2: The transportation cost will increase an additional 30% per year from its 
expected level between 2015 and 2025, which will make the desire to drive ratio will 
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decrease by 30% over the same period. Trip lengths of cars, taxis, and shuttles will 
reduce 15% per year from their expected levels over the period 2015-2025. 

2.3.4. Integrated scenario (IS) 

The city authorities may choose to invest both in supply and demand side policies 
simultaneously. Therefore, two different scenarios for integrating SMM and TDM scenarios 
are considered, which are as follows: 

(1) IS-1: the combination of SMM-1 and TDM-1 

(2) IS-2: the combination of SMM-2 and TDM-2 

In total, there are seven different scenarios (BAU, SMM-1, SMM-2, TDM-1, TDM-2, IS-1, IS-
2) to be tested using our SD model so that they can be compared with each other and find out 
the best scenario option. It should be noted that the considered policies and scenarios are 
recommended as neither the best policies nor the best scenarios. Alternatively, it is intended to 
illustrate a realistic assessment of the potential transport policies that can offer noteworthy 
contributions to energy conservation and CO2 mitigation in the city. Therefore, the reduction 
and increased percentages for the considered policies are determined in a way that they should 
be in a realistic range and similar to those of the previous studies (Guzman and Orjuela, 2017; 
Han and Hayashi, 2008; Xue Liu et al., 2015).  

3. Results and discussions 

3.1. Model validation 
Model validation is a critical step to ensure the accuracy and reliability of the developed model 
with actual statistics. Thus, we   perform a validation study by comparing the historical (actual) 
values with the  simulated ones for the period between 2000 and 2015. The examined variables, 
herein, are our reference points: energy consumption and CO2 emissions. The behaviors are 
analyzed using these two variables based on existing socioeconomic and mobility conditions. 
The formulas defined in the previous section are used to calculate energy consumption and 
associated CO2 emissions for the existing values because there are not any particular data 
available for these two variables. Table 4 demonstrates the outcomes of this validation process 
with associated error rates. Differences may be caused for two reasons. First, a certain margin 
error occurs due to data fitting of system variables using variety of mathematical statistical 
approaches. 

Second, errors can also be amplified from the interaction of effects between different variables 
in the model during the running process (Wen et al., 2016). As depicted in Table 4, the error 
rates for both energy consumption and CO2 emissions are all under 1%. That being said, it can 
be concluded that the developed model appears to be reliable and accurate for the purpose of 
our study (Qudrat-Ullah and Seong, 2010; Wang et al., 2008). 
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Table 4: Energy consumption and CO2 emissions simulated results with historical values and error rates 

Year Total energy consumption (kiloliters of oil equivalent) Total CO2 emissions (metric tons) 
Historical Simulated Error (%) Historical Simulated Error (%) 

2000 1,039,572 1,030,943 0.83 2,584,258 2,562,980 0.82 

2001 1,097,029 1,090,534 0.59 2,728,906 2,712,890 0.59 

2002 1,192,777 1,188,193 0.38 2,967,071 2,955,770 0.38 

2003 1,268,078 1,270,938 -0.23 3,153,832 3,160,890 -0.22 

2004 1,413,384 1,402,735 0.75 3,515,662 3,489,400 0.75 

2005 1,490,759 1,483,629 0.48 3,709,821 3,692,240 0.47 

2006 1,561,453 1,558,778 0.17 3,889,901 3,883,300 0.17 

2007 1,726,581 1,728,929 -0.14 4,304,012 4,309,800 -0.13 

2008 1,798,952 1,784,918 0.78 4,486,241 4,451,640 0.77 

2009 1,888,996 1,878,881 0.54 4,708,039 4,683,100 0.53 

2010 1,909,202 1,909,188 0.001 4,759,934 4,759,900 0.001 

2011 1,995,655 2,001,944 -0.32 4,977,927 4,993,440 -0.31 

2012 2,122,658 2,104,893 0.84 5,298,617 5,254,810 0.83 

2013 2,245,997 2,232,249 0.61 5,626,404 5,581,980 0.79 

2014 2,365,039 2,357,143 0.33 5,931,960 5,912,790 0.32 

2015 2,506,596 2,509,726 -0.12 6,298,309 6,308,160 -0.16 

3.2.  Business as usual scenario (BAU) 
Future predictions under BAU scenario were obtained using our developed SD model. In this 
scenario, the expected modal share between the years 2016 and 2025 is shown in Figure 5. The 
share of rail transit trips in this figure shows a sharply rising trend from its share of 10.7 % in 
2016 to a share of 25.3% in 2025. Unlike rail transit, the share of road-based public 
transportation trips composed of bus, shuttle, minibus, jitney and taxi trips shows a dramatic 
declining trend from its share of 53.3% in 2016 to a share of 35.9% in 2025. On the other hand, 
the share of car trips rises from 34% in 2016 to 38% in 2025 over the same period. Furthermore, 
the share of trips made by sea lines also declines over the same period from 1.2% in 2016 to 
0.5% in 2025. These figures are parallel with the development plans of the city where a large 
proportion of the investment budgets is devoted to expanding the rail network in the city. 
However, it is also important to point out that the increase in the share of car trips is due to the 
rapidly increasing personal motorization trend, which has been already at alarming levels. 
Therefore, the Istanbul urban passenger motorized trips may move away from the target of 
reaching sustainable transportation, especially when considering the modal share, where the car 
will still be a leading component. 

The expected energy consumption and associated CO2 emissions per capita in motorized 
passenger transport in the city between 2016 and 2025 are provided in Figure 6. As depicted in 
this figure, energy consumption per capita is expected to increase by 72% from 183 liters of oil 
equivalent in 2016 to 315 liters of oil equivalent in 2025. Similarly, CO2 emissions per capita 
are expected to increase by 76% over the same period from their level of 460 kg in 2016 to 807 
kg in 2025. These dramatic increases are directly associated with the expected increase in total 
motorized passenger trips and trip lengths. Between 2016 and 2025, the number of daily 



21 
 

motorized passenger trips is expected to increase from approximately 16.32 million in 2016 to 
29.43 million in 2025, with an increase of 80%. Over the same period, it is also estimated that 
trip lengths for all transportation means are expected to increase approximately 30% on average.  

 
Figure 5: Modal share (%) in Istanbul under BAU scenario (2016-2025) 

 
Figure 6: Energy consumption and CO2 emissions per capita under the BAU scenario (2016-2025) 

A noteworthy result of the BAU scenario is that the contribution of car trips to total energy 
consumption and CO2 emissions shows a rising trend, despite the planned considerable 
investments in rapid transit including the railway and BRT networks (see Figure 7 and 8). While 
car trips account for 69% of total energy consumption and 70% of CO2 emissions in 2016, they 
are expected to account for 80% of total energy consumption and 77% of CO2 emissions in 
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2025. On the other hand, the share of non-road based trips (rail and sea) shows a rising pattern; 
however, this does not seem enough to hinder the pressure of rapidly increasing car trips on 
energy consumption and CO2 emissions. This suggests that much more effort is needed to 
manage the passenger transport in the city in terms of reducing energy consumption and CO2 
emissions to achieve sustainable mobility goals. 

The results of BAU scenario indicate that current development plans will have a minimal 
overall impact on the transport caused energy consumption and CO2 emissions in the city 
because of the increasing number of motorized trips and trip lengths, especially from cars. 
Hence, greater effort is needed to better control these figures, and to this end, different sets of 
policies can be employed. 

 
Figure 7: Percent share of modes in total energy consumption (2016-2025) 
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Figure 8: Percent share of modes in total CO2 emissions (2016-2025) 

3.3. Comparison and evaluation of proposed scenarios 
Our model was run under the generated scenarios as explained above. For the year 2025, the 
expected total energy consumption and associated CO2 emission levels of each scenario are 
provided in Figure 9. The sequence from the least effective to the most in terms of both energy 
consumption and CO2 emissions is SMM-1, SMM-2, TDM-1, IS-1, TDM-2, and IS-2. The 
reduction percentages of these scenarios compared to the BAU scenario can be seen in Figure 
9. Scenarios only based on supply-side measures, SMM-1 and SMM-2, appear to be the least 
effective among the other options with reduction rates of 4.6% and 9.0% in energy consumption 
and 4.7% and 9.3% in CO2 emissions, respectively. This might be because additional 
improvements are more difficult to realize on the technological side. On the other hand, TDM-
based scenarios, TDM-1 and TDM-2, perform better in further reducing energy consumptions 
and emissions. As TDM-2 scenario offers a 27.2% reduction in total energy consumption and 
a 26.2% reduction in total CO2 emissions, it is even better than the combined IS-1 scenario, 
which is composed of SMM-1 and TDM-1. This suggests how effective TDM policies can be 
in reducing the transport sector’s energy consumption and associated CO2 emissions in a 
megacity. Especially considering the fact that the evolution of demand-side policy interventions 
in the transport sector of Istanbul is in a very early stage (Batur & Koç, 2017), TDM measures 
should be taken into consideration in all ways and means to mitigate the increasing levels of 
energy consumption and CO2 emissions. 

As expected, the results indicate the most effective scenario option as IS-2, which is composed 
of ambitious scenario options of SMM and TDM, and which shows a reduction rate of 33.5% 
in energy consumption and 32.8% in CO2 emissions in 2025 compared to the BAU scenario. 
The results show that IS-2 can reduce the total energy consumption in 2025 by as much as 1.8 
billion liters of oil equivalent while it can cut CO2 emission levels by as much as 4.5 billion kg. 
From the standpoint of per capita values, if the IS-2 scenario is to be implemented by 2025, the 
energy consumption per capita will be 209 liters of oil equivalent while CO2 emissions per 
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capita would be 542 kg. In other words, IS-2 has the potential to bring energy consumption and 
CO2 per capita levels in 2025 to the levels of the BAU scenario in 2018.  

 
Figure 9: Total energy consumption and CO2 emissions in 2025 under different scenarios 

In addition, it is important to address the modal shares for these scenarios. Returning briefly to 
the subject of scenario generation, the fuel economy of vehicles, rail emission factor, 
transportation cost, and trip lengths have been concerned with when generating our scenarios, 
SMM-1, SMM-2, TDM-1, TDM-2, IS-1, and IS-2. Among these, only transportation cost plays 
a role in changing modal share figures compared to the BAU scenario, through which desire to 
drive ratio is affected, and thus annual passenger trips per car. Given that it has been considered 
in TDM scenarios, it did not affect the modal share in SMM scenarios at all. As presented in 
Table 3, transportation cost has a very limited effect on changing the modal shares of TDM and 
IS scenarios. The reasons behind this might be that the perceived attractiveness of personal car 
usage could be so high that 15% to 30% increase in transportation cost does not influence much 
the mode choice of people. Similarly, the conditions and availability of alternative modes (e.g., 
safety, speed, crowd, reliability, and adequacy) could be so poor that people still tend to choose 
personal cars over the other modes. This indicates that much more effort needed other than 
increasing transportation cost to tackle with increasing personal car usage in the city.  

Table 3: Modal Shares in 2025 under different scenarios 

Scenarios Road PT Rail Sea Lines Car 
BAU 35.97% 25.27% 0.51% 38.24% 
SMM-1 35.97% 25.27% 0.51% 38.24% 
SMM-2 35.97% 25.27% 0.51% 38.24% 
TDM-1 36.01% 25.30% 0.51% 38.24% 
TDM-2 36.03% 25.31% 0.51% 38.24% 
IS-1 36.01% 25.30% 0.51% 38.24% 
IS-2 36.03% 25.31% 0.51% 38.24% 
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Above all, the results of BAU scenario clearly shows that current development plans with a 
particular focus on rail network expansion will fall short of combatting ever-increasing energy 
consumption and CO2 emissions in the city because of the increasing number of personal 
vehicles, motorized trips, and trip lengths. The comparison results of proposed scenarios 
indicate how supply-side measures (i.e., improved fuel economy of vehicles and reduced rail 
emission factor) had a limited effect on the total energy consumption and associated CO2 
emissions of the transport sector for the city compared to demand-side measures (i.e., increased 
transportation cost and reduced trip lengths) with a noteworthy potential in this regard. These 
results show consistency with earlier research (see Gross et al., 2009) that highlights the 
significant potential for energy conservation and associated CO2 emissions savings from 
demand-side policies. As future steps to decrease energy consumption and CO2 emissions are 
required for making cities more livable and adaptable to sustainable development, these results 
suggest that the policymakers in the city should give the highest priority to all demand-side 
policies that aim to control the vehicle ownership rates (through increasing transportation cost) 
and reduce the trip lengths. According to the results, additional improvements can be achieved 
by investing in the supply-side policies that aim to improve rail emission factor and fuel 
economy of vehicle fleet; thus, such policies should also be accounted in devising appropriate 
transport policies for the city. In the case of unlimited or large budgets for investments, the 
policymakers can consider all policies from both categories, the supply-side and the demand-
side as the IS-2 scenario promises the most significant impact. Furthermore, these results also 
apply to the similar cities of the developing world that they should prioritize demand-side 
policies to mitigate energy consumption and CO2 emissions as their contributions are more 
than those of the supply-side policies are although the supply-side policies show a significant 
impact. 

3.4. Sensitivity analysis 

Furthermore, a sensitivity analysis is carried out to test the robustness of the developed model 
with respect to the changes in the varying parameters. Numerous parameters are considered that 
might have a subtle effect on total energy consumption and total CO2 emissions that are the 
variables of interest. Because there is a linear relationship between total energy consumption 
and total CO2 emissions, a parameter that is sensitive to any of these two variables is also 
sensitive to the other one. For this, the total CO2 emissions variable is considered only in our 
analyses. In order to conduct the analysis, the values of the selected parameters are changed 
within ±20% of their ranges and the changes in total CO2 emissions are observed. Table 4 
presents the results of the sensitivity analysis. As observed from the results, the selected 
parameters are all sensitive to total CO2 emissions in different ranges. In particular, GDP growth 
rate indicates low-sensitivity and transportation cost indicate mid-sensitivity, while the other 
parameters are found highly sensitive to total CO2 emissions.  

Table 4: Sensitivity analysis results of the selected parameters 

Parameter Test range Sensitivity to total CO2 
emissions 

  High-sensitivity; 
sensitivity remains stable 
over time 

Population growth rate (%) 1.11 – 2.33 
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GDP growth rate (%) -0.27 – 56 Low-sensitivity; 
sensitivity increases over 
time 

Transportation cost (Turkish Lira) 37.6 – 278.4 Mid-sensitivity; 
sensitivity increases over 
time 

Rail length increase (km) 0 – 29.46 High sensitivity; 
sensitivity remains stable 
over time 

# of rail transit passengers increase per km (person) -415,200 – 710,040 High sensitivity; 
sensitivity remains stable 
over time 

BRT length increase (km) 0 – 21.96 High sensitivity; 
sensitivity remains stable 
over time 

# of BRT passengers increase per km (person) -554,560 – 1,933,200 High sensitivity; 
sensitivity remains stable 
over time 

Bus fleet in operation (vehicle) 3040 – 6862 High sensitivity; 
sensitivity remains stable 
over time 

Trip growth per bus (trip) -11,160 – 33,300 High sensitivity; 
sensitivity remains stable 
over time 

Minibus trips growth rate (%) -10.2 – 16.9 High sensitivity; 
sensitivity remains stable 
over time 

Shuttle trips growth rate (%) -0.47 – 18 High sensitivity; 
sensitivity remains stable 
over time 

Taxi trip length (km) 4.99 – 14.52 High sensitivity; 
sensitivity remains stable 
over time 

Taxi energy cons. per trip*km (liters of oil) 0.056 – 0.12 High sensitivity; 
sensitivity remains stable 
over time 

Car trip length (km) 6.89 – 20.02 High sensitivity; 
sensitivity remains stable 
over time 

Car energy cons. per trip*km (liters of oil) 0.044 – 0.098 High sensitivity; 
sensitivity remains stable 
over time 

Shuttle trip length (km) 7.68 – 22.87 High sensitivity; 
sensitivity remains stable 
over time 
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Shuttle energy cons. per trip*km (liters of oil) 0.088 – 0.168 High sensitivity; 
sensitivity remains stable 
over time 

 

4. Conclusion 

The current paper first predicts future energy consumption and CO2 emissions caused by 
motorized passenger transport in Istanbul using a developed SD model. Following, the 
developed model is used to test and propose appropriate scenarios in reducing expected levels 
of energy consumption and CO2 emissions in the city. In order to that, six scenarios are 
generated based on various supply management and travel demand management measures, 
which are then tested and compared with the BAU scenario. The generated scenarios based on 
supply-side measures are SMM-1 and SMM-2, which include different reduction targets on the 
levels of rail emission factor and fuel economy of the vehicle fleet. On the other hand, the 
generated demand side scenarios are TDM-1 and TDM-2, which include increases in 
transportation cost and reductions in trip lengths. The last two scenario options are IS-1 and IS-
2 hereby IS-1 is based on implementing SMM-1 and TDM-1 simultaneously while IS-2 
combines SMM-2 and TDM-2.  

Under BAU scenario, the results show that energy consumption per capita from passenger trips 
is expected to increase from 183 liters of oil equivalent in 2016 to 315 liters of oil equivalent 
in 2025 while CO2 emissions per capita are expected to increase from 460 kg in 2016 to 807 kg 
in 2025. This dramatic increase is directly associated with the increasing level of car trips, trip 
lengths and overall travel demand in the city. In this point, the generated scenarios offer 
noteworthy potential in combating these dramatic increases in energy consumption and CO2 
emissions, with expected reduction rates ranging between 4% and 34% in both categories. 
Among the stand-alone scenario options, travel demand management based scenarios 
outperform supply management measures based scenarios. The reduction percentages of TDM 
based scenarios in terms of both energy consumption and CO2 emissions range from 13% to 
27% while the reduction percentages for SMM based scenarios range from 4% to 9%. Among 
the considered policies, this suggests that the policies from the demand side are more effective 
than the policies from the supply side. 

Furthermore, the results suggested that the IS-2 scenario is the best scenario option among all 
the considered scenarios by offering a 33.5% reduction in total energy consumption and a 
32.8% reduction in total CO2 emissions while the other integrated scenario (IS-1) offers a 
17.6% reduction in total energy consumption and 17.2% reduction in CO2 emissions in 2025. 
Although IS-2 achieves the lowest levels of energy consumption and CO2 emissions, TDM-2 
scenario shows a similar performance with IS-2 as it offers a 27.2% reduction in total energy 
consumption and a 26.2% reduction in total CO2 emissions. Moreover, the demand side policies 
can be even more effective than combining the supply side and demand side policies as TDM-
2 scenario outperforms IS-1 scenario. This suggests that demand-side policies can be very 
effective in reducing the transport sector’s energy consumption and associated CO2 emissions 
in a mega-city. Therefore, it is recommended that giving priority to TDM policies is essential 
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in developing an intervention plan to combat increasing energy consumption and CO2 
emissions in the transport sector. 

One might raise particular concerns regarding the developed model for this study. One concern 
might be the exclusion of public transportation service level from our model, which possibly 
affects the travel choices of people in terms of punctuality, comfort, and reliability. However, 
it is believed that service level of public transportation does not have a major effect in the travel 
choice of inhabitants in the city within the current situation because the capacity usage of PT 
services is very high. For instance, the BRT system has been operating over-capacity ever since 
it started. In addition to that, there is not enough data on these factors; therefore, it has been 
decided to exclude them. Another possible concern is the exclusion of investment budgets 
towards different transport means, which is an important factor in expanding network length 
and service of any means of transport available in the city. The quality and sufficiency of data 
on this factor are not enough to determine the relationships with the other factors included in 
the model, and thus it was also excluded. On the other hand, policies on demand side were 
considered, which only concerned reducing overall trip lengths without taking into account trip 
purposes. However, people travel for different purposes and it is better to devise appropriate 
policies for each trip purpose such as workplace travel plans, school travel plans, online 
shopping and car clubs. Further research in this field would be of great help in overcoming the 
aforementioned possible shortcomings and limitation of this study.  

 

5. Appendices 

Appendix A: See Figures A1 and A2. 
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Figure A-1: Stock and flow diagram of the population, household disposable income and transport 
subsystems  

 

 

Figure A-2: Stock and flow diagram of the energy consumption and CO2 emissions subsystem 

 

 

 

Appendix B: List of variables 

Population subsystem: 
(1) Population growth rate 

  (Type: Auxiliary, Unit: Percent) (Turkstat, 2016c) 
 

(2) Population increase = Population × Population growth rate 
  (Type: Flow, Unit: Person) 
 

(3) Population = INTEG(Population increase) + initial population value  
  (Type: Stock, Unit: Person) 
 

Household disposable income subsystem: 
(1) GDP growth rate 

  (Type: Auxiliary, Unit: Percent) (PWC, 2009; TEPAV, 2016) 
 

(2) Effect of GDP on disposable income 
         (Type: Auxiliary, Unit: Dimensionless) (Turkstat, 2016d) 
 
(3) Disposable income increase = Household Disposable Income × Effect of GDP on disposable income ×                         

GDP growth rate 
  (Type: Flow, Unit: Turkish Lira) 

 
(4) Household disposable income = INTEG(Disposable income increase) + initial income value 

  (Type: Stock, Unit: Turkish Lira) 
 

Transport subsystem: 
(1) # Cars forecast = 2.65096E+006 – (Population × 0.15039) + (Household Disposable Income × 120.853) 

  (Type: Auxiliary, Unit: Vehicle) (Turkstat, 2016b) 
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(2) Car increase =  # Cars forecast + # Cars 
         (Type: Flow, Unit: Vehicle) 

 
(3) # Cars = INTEG(Car increase) 

  (Type: Stock, Unit: Vehicle) 
 

(4) Transportation cost 
  (Type: Auxiliary, Unit: Turkish Lira) (Turkstat, 2016d) 

 
(5) Desire to drive ratio = Household disposable income / Transportation cost 

(Type: Auxiliary, Unit: Dimensionless) 
 

(6) Annual passenger trips forecast = –1.44999E+009 + (382.38 × Population) + (100380 × Household 
disposable income) 

  (Type: Auxiliary, Unit: Trip) 
 
(7) Annual passenger trips per car = 709.033 – (1.00929E–008 × Rail+BRT passenger trips) + (0.330705 × 

Desire to drive ratio) + (9.0247E-009 × Annual passenger trips forecast) 
  (Type: Auxiliary, Unit: Trip) 
 

(8) Rail+BRT passenger trips = BRT Passenger Trips + Rail Transit Passenger Trips 
         (Type: Auxiliary, Unit: Trip) 
 
(9) Car passenger trips = # Cars forecast × Annual passenger trips per car 
         (Type: Auxiliary, Unit: Trip) 

 
(10) Initial rail length 
         (Type: Auxiliary, Unit: Kilometer) (IMM, 2018a) 
 
(11) Rail length increase 
         (Type: Auxiliary, Unit: Kilometer) (IMM, 2018a) 
 
(12) # of rail transit passengers increase per km 
         (Type: Auxiliary, Unit: Person) (IMM, 2018a) 

 
(13) Initial # of rail transit passengers per km 
         (Type: Auxiliary, Unit: Person) (IMM, 2018a) 
 
(14) # of rail transit passengers per km = # of rail transit passengers increase per km + initial # of rail transit 

passengers per km 
 (Type: Auxiliary, Unit: Person) 

 
(15) Rail transit trips increase = Rail length increase × # of rail transit passengers per km + Initial rail length × 

(# of rail transit passengers per km – Initial # of rail transit passengers per km) 
 (Type: Flow, Unit: Trip) 

 
(16) Rail transit passenger trips = INTEG(Rail transit trips increase) + initial rail transit trips value 

 (Type: Stock, Unit: Trip) 
 
(17) Initial BRT length 
        (Type: Auxiliary, Unit: Kilometer) (IMM, 2018a) 
 
(18) BRT length increase 

 (Type: Auxiliary, Unit: Kilometer) (IMM, 2018a) 
 
(19) # of BRT passengers increase per km 

 (Type: Auxiliary, Unit: Person) (IMM, 2018a) 
 

(20) Initial # of BRT passengers per km 
 (Type: Auxiliary, Unit: Person) (IMM, 2018a) 
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(21) # of BRT passengers per km = # of BRT passengers increase per km + Initial # of BRT passengers per 
km 

 (Type: Auxiliary, Unit: Person) 
 
(22) BRT trips increase = BRT length increase × # of BRT passengers per km +Initial BRT length × (# of 

BRT passengers per km – Initial # of BRT passengers per km) 
 (Type: Flow, Unit: Trip) 

 
(23) BRT passenger trips = INTEG(BRT trips increase) + initial BRT trips value 

 (Type: Stock, Unit: Trip) 
 
(24) Bus fleet in operation 
        (Type: Auxiliary, Unit: Vehicle) (IETT, 2017b) 
 
(25) Trip growth per bus 
        (Type: Auxiliary, Unit: Trip) (IETT, 2017b) 
 
(26) Bus trips increase = Bus fleet in operation × Trip growth per bus 

 (Type: Flow, Unit: Trip) 
 
(27) Bus passenger trips = INTEG(Bus trips increase) + initial bus trips value 

 (Type: Stock, Unit: Trip) 
 

(28) Minibus trips growth rate 
        (Type: Auxiliary, Unit: Percent) (IETT, 2017b) 
 
(29) Minibus trips increase = Minibus passenger trips × Minibus trips growth rate 

 (Type: Flow, Unit: Trip) 
 

(30) Minibus passenger trips = INTEG(Minibus trips increase) + initial minibus trips value 
(Type: Stock, Unit: Trip) 

 
(31) Shuttle trips growth rate 
       (Type: Auxiliary, Unit: Percent) (IMM, 2015, 2011) 
 
(32) Shuttle trips increase = Shuttle passenger trips × Shuttle trips growth rate 

(Type: Flow, Unit: Trip) 
 

(33) Shuttle passenger trips = INTEG(Shuttle trips increase) + initial shuttle trips value 
(Type: Stock, Unit: Trip) 

 
(34) Sea trips growth rate 
       (Type: Auxiliary, Unit: Percent) (Çancı et al., 2015; IMM, 2015, 2011) 
 
(35) Sea trips increase = Sea passenger trips × Sea trips growth rate 

(Type: Flow, Unit: Trip) 
 
(36) Sea passenger trips = INTEG(Sea trips increase) + initial sea trips value 

(Type: Stock, Unit: Trip) 
 
(37) Taxi trips 
       (Type: Auxiliary, Unit: Trip) (IMM, 2015, 2011) 
 
(38) Jitney trips 
       (Type: Auxiliary, Unit: Trip) (IMM, 2015, 2011) 
 

(39) Total motorized passenger trips = Car passenger trips + Rail+BRT passenger trips + Bus passenger trips 
+ Minibus passenger trips + Shuttle passenger trips + Sea passenger Trips + Taxi trips + Jitney trips 
(Type: Auxiliary, Unit: Trip) 
 

Energy consumption and CO2 emissions subsystem: 
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(1) Energy kwh per trip for rail 
         (Type: Auxiliary, Unit: Kilowatt hour per trip) (IMM, 2018a) 

 
(2) Rail transit total kwh = Energy kwh per trip for rail × Rail transit passenger trips 
         (Type: Auxiliary, Unit: Kilowatt hour) 
 
(3) Rail emission factor 
         (Type: Auxiliary, Unit: Kilogram CO2 per kilowatt hour) (EIGM, n.d.) 
 
(4) Rail transit total emission = Rail emission factor × Rail transit total kwh 
         (Type: Auxiliary, Unit: Kilogram CO2) 
 
(5) Energy per sea passenger trip 

(Type: Auxiliary, Unit: Liter of oil) (IMM, 2018b) 
 

(6) Sea transit total energy consumption = Energy per sea passenger trip × Sea passenger trips 
         (Type: Auxiliary, Unit: Liter of oil) 
 
(7) Sea emission factor 

(Type: Auxiliary, Unit: Kilogram CO2 per liter of oil) (IPCC, 2018) 
 
(8) Sea transit total emission  = Sea emission factor × Sea transit total energy consumption 
         (Type: Auxiliary, Unit: Kilogram CO2) 
 
(9) Taxi trip length 

(Type: Auxiliary, Unit: Kilometer) (IMM, 2011) 
  

(10) Taxi energy consumption per trip×km 
         (Type: Auxiliary, Unit: Liter of oil per trip×km) (GFEI, 2017) 
 
(11) Taxi total energy consumption = Taxi trips × Taxi trip length × Taxi energy consumption per trip×km 
         (Type: Auxiliary, Unit: Liter of oil) 
 
(12) Taxi emission factor 

(Type: Auxiliary, Unit: Kilogram CO2 per liter of oil) (IPCC, 2018) 
 

(13) Taxi total emission  = Taxi emission factor × Taxi total energy consumption 
         (Type: Auxiliary, Unit: Kilogram CO2) 
 
(14) Car trip length 

(Type: Auxiliary, Unit: Kilometer) (IMM, 2011) 
  

(15) Car energy consumption per trip×km 
         (Type: Auxiliary, Unit: Liter of oil per trip×km) (GFEI, 2017) 
 
(16) Car total energy consumption = Car trips × Car trip length × Car energy consumption per trip×km 
         (Type: Auxiliary, Unit: Liter of oil) 
 
(17) Car emission factor 

(Type: Auxiliary, Unit: Kilogram CO2 per liter of oil) (IPCC, 2018) 
 

(18) Car total emission  = Car emission factor × Car total energy consumption 
         (Type: Auxiliary, Unit: Kilogram CO2) 
 
(19) Shuttle trip length 

(Type: Auxiliary, Unit: Kilometer) (IMM, 2011) 
  

(20) Shuttle energy consumption per trip×km 
         (Type: Auxiliary, Unit: Liter of oil per trip×km) (GFEI, 2017) 
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(21) Shuttle total energy consumption = Shuttle trips × Shuttle trip length × Shuttle energy consumption per 
trip×km 

         (Type: Auxiliary, Unit: Liter of oil) 
 
(22) Shuttle emission factor 

(Type: Auxiliary, Unit: Kilogram CO2 per liter of oil) (IPCC, 2018) 
 

(23) Shuttle total emission  = Shuttle emission factor × Shuttle total energy consumption 
         (Type: Auxiliary, Unit: Kilogram CO2) 
 
(24) Energy per BRT passenger trip 

(Type: Auxiliary, Unit: Kilowatt hour per trip) (IETT, 2017b) 
 

(25) BRT total energy consumption = Energy per BRT passenger trip × BRT passenger trips 
         (Type: Auxiliary, Unit: Liter of oil) 
 
(26) BRT emission factor 

(Type: Auxiliary, Unit: Kilogram CO2 per liter of oil) (IPCC, 2018) 
 
(27) BRT total emission  = BRT emission factor × BRT total energy consumption 
         (Type: Auxiliary, Unit: Kilogram CO2) 
 
(28) Energy per bus passenger trip 

(Type: Auxiliary, Unit: Kilowatt hour per trip) (IETT, 2017b) 
 

(29) Bus total energy consumption = Energy per bus passenger trip × Bus passenger trips 
         (Type: Auxiliary, Unit: Liter of oil) 
 
(30) Bus emission factor 

(Type: Auxiliary, Unit: Kilogram CO2 per liter of oil) (IPCC, 2018) 
 
(31) Bus total emission  = Bus emission factor × Bus total energy consumption 
         (Type: Auxiliary, Unit: Kilogram CO2) 
 
(32) Energy per minibus passenger trip 

(Type: Auxiliary, Unit: Kilowatt hour per trip) (Source: Authors) 
 

(33) Minibus total energy consumption = Energy per minibus passenger trip × Minibus passenger trips 
         (Type: Auxiliary, Unit: Liter of oil) 
 
(34) Minibus emission factor 

(Type: Auxiliary, Unit: Kilogram CO2 per liter of oil) (IPCC, 2018) 
 
(35) Minibus total emission  = Minibus emission factor × Minibus total energy consumption 
         (Type: Auxiliary, Unit: Kilogram CO2) 
 
(36) Energy per jitney passenger trip 

(Type: Auxiliary, Unit: Kilowatt hour per trip) (Source: Authors) 
 

(37) Jitney total energy consumption = Energy per jitney passenger trip × Jitney passenger trips 
         (Type: Auxiliary, Unit: Liter of oil) 
 
(38) Jitney emission factor 

(Type: Auxiliary, Unit: Kilogram CO2 per liter of oil) (IPCC, 2018) 
 
(39) Jitney total emission  = Jitney emission factor × Jitney total energy consumption 
         (Type: Auxiliary, Unit: Kilogram CO2) 
 
(40) Kwh to oil equivalent = 0.0895 

(Type: Auxiliary, Unit: Liter of oil per kilowatt hour) 
 

(41) Rail energy consumption oil equivalent = Kwh to oil equivalent × Rain transit total kwh 
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         (Type: Auxiliary, Unit: Liter of oil) 
 
(42) Total energy consumption = Rail energy consumption oil equivalent + Sea transit total energy 

consumption + Taxi total energy consumption + Car total energy consumption + Shuttle total energy 
consumption + BRT total energy consumption + Bus total energy consumption + Minibus total energy 
consumption + Jitney total energy consumption 

         (Type: Auxiliary, Unit: Liter of oil) 
 
(43) Total CO2 emissions = Rail transit total emission + Sea transit total emission + Taxi total emission + Car 

total emission + Shuttle total emission + BRT total emission + Bus total emission + Minibus total 
emission + Jitney total emission 

         (Type: Auxiliary, Unit: Kilogram CO2) 
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