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this paper, the problem is considered as a Hammerstein integral equation and solu-
tions are obtained using Adomian’s decomposition method.
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1 INTRODUCTION

We consider the mathematical model for an adiabatic tubular chemical reactor which
processes an irreversible exothermic chemical reaction. For steady state solutions,
the model can be reduced to the ordinary differential equation

u
′′ − λu

′
+ F (λ, µ, β, u) = 0 (1)

with boundary conditions

u
′
(0) = λu(0) u

′
(1) = 0 (2)

where
F (λ, µ, β, u) = λµ(β − u) exp(u)

(see [1], [2]). The unknown u represents the steady state temperature of the reac-
tion, and the parameters λ, µ and β represent the Peclet Number, the Damkohler
Number and the dimensionless adiabatic temperature rise respectively. This prob-
lem has been studied by numerous authors (e.g. [1], [3], [4]) who have demonstrated
numerically the existence of solutions (sometimes multiple solutions), for particular
parameter ranges.

In order to develop results concerning the solution of (1)-(2), the problem can be
converted, using Green’s Function technique, into a Hammerstein integral equation

u(x) =
∫ 1

0
k(x, y)f(y, u(y))dy 0 ≤ x ≤ 1 (3)
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where k(x, y) is defined by

k(x, y) =

{
eλ(x−y) if 0 ≤ x < y
1 if y ≤ x ≤ 1

and
f(y, u) = µ(β − u) exp(u);

(see [2]).

We consider (3) as an integral equation in the space C[0, 1] of continuous functions
on the closed interval [0, 1] with norm defined by

∥u∥ = sup
x∈[0,1]

|u(x)|.

Throughout, we assume λ and µ are positive, and β is nonnegative. The following
existence and uniqueness theorem can be achieved using the Contraction Mapping
Principle.

Theorem 1.1: For any M > 0, the Hammerstein integral equation (3) has a unique
solution in B(M) = {u ∈ C[0, 1] : ∥u∥ ≤ M} provided

µ < min{ M

∥K∥(β +M)eM
,

1

∥K∥(|β − 1|+M)eM
}

Proof: The given restriction of µ ensures that the Hammerstein integral equation
(3) defines a contraction mapping on B(M). The result follows from the application
of the Contraction Mapping Principle and is given in [2].

This Hammerstein integral equation cannot be solved exactly. The purpose of this
paper is to consider the application of Adomian’s decomposition method which has
been shown to be particularly well suited for the solution of Hammerstein integral
equations (see [5]). An advantage of this method is that it produces an analytic
approximation to the solution, i.e. a function defined on [0, 1], rather than approx-
imate numerical values at a discrete set of points.

It is our experience that clear descriptions of Adomian’s method are not readily
available in the literature. Thus in Section 2, a brief formulation of the method is
presented. The method was originally developed for stochastic equations [6], but
our application and hence our description is restricted to deterministic equations.
In Section 3, the method is applied to the Hammerstein integral equation (3) in two
cases: (i) β ̸= 0 and (ii) β = 0. In the latter case we verify that the method gives
the expected unique trivial solution. Finally, in Section 4, the results for case (i)
with particular values of the parameters are compared with numerical results for
two more classical methods of solution.
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2 FORMULATION OF ADOMIAN’S METHOD

Adomian’s decomposition method is used for solving operator equations of the form

u = v +Nu (4)

where N : X −→ X is a nonlinear mapping from a Banach space X into itself and
v ∈ X is known. Since the method does not resort to linearization or assumptions
of weak nonlinearity, the nonlinearities which can be handled are quite general and
the solutions generated may be more realistic than those achieved by simplifying the
model of the physical problem to achieve conditions required for other techniques [7].

Adomian’s method assumes that the solution u can be expanded as an infinite series

u =
∞∑
n=0

un un ∈ X ∀n (5)

and that the image Nu has an expansion

Nu =
∞∑
n=0

An An ∈ X ∀n. (6)

Substituting (5) and (6) into (4) gives

∞∑
n=0

un =
∞∑
n=0

An + v (7)

which is satisfied formally if we set

u0 = v

un+1 = An ∀ n = 0, 1, 2, . . . . (8)

Thus, we need to determine the so called Adomian polynomials An, n = 0, 1, 2, . . ..
(We should point out that, as we shall see, they need not be polynomials.)

To determine the An’s, a scalar parameter λ is introduced to set

u(λ) =
∞∑
n=0

λnun ∈ X (9)

and

Nu(λ) =
∞∑
n=0

λnAn ∈ X (10)

so that (5) and (6) are special case of (9) and (10) respectively with λ = 1 and
u = u(1). That is u(λ) and Nu(λ) are assumed to be analytic vector valued func-
tion of λ both with radius of convergence greater than 1.
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Now, (9) and (10) are Maclaurin expansions in X and as in [7] and [8], we can
deduce that the coefficients An, n = 0, 1, 2, . . . are given by

An =
1

n!

dn

dλn
Nu(λ)|λ=0. (11)

Thus,

A0 = Nu(λ)|λ=0 = Nu0

A1 =
d

dλ
Nu(λ)|λ=0 = (DN)(u0)u1 (12)

A2 = (DN)(u0)u2 +
1

2!
(D2N)(u0)u

2
1

and so on, where DrN(u0) denotes the rth Fréchet derivative of N at u0 ∈ X.

We should note that while An is a polynomial in u1, . . . , un, its dependence on u0

is decided by the form of N and its derivatives. However, generally, An depends
only on u0, u1, . . . , un, so that (8) allows successive calculation of un, n = 0, 1, 2, . . ..
At any stage, the solution can be approximated by the partial sum Sn =

∑n−1
i=0 ui.

Various papers claim general proofs of the convergence of the Adomian’s series to a
solution of the nonlinear equation; see for example [5], [8], [9]. However, these are
unconvincing and we have been unable to find a clear general proof of convergence
of Adomian’s method.

3 APPLICATION TO THEHAMMERSTEIN IN-

TEGRAL EQUATION

Consider the general Hammerstein integral equation

u(x) = v(x) +
∫ 1

0
k(x, y)f(y, u(y))dy (13)

where k is continuous on [0, 1]× [0, 1] and f is continuous on [0, 1]×R.

This equation is in a form suitable for the application of Adomian’s method, as
derived in Section 2, with the nonlinear term N : C[0, 1] −→ C[0, 1] defined by

Nu(x) =
∫ 1

0
k(x, y)f(y, u(y))dy.

The Fréchet derivatives are given by

(DN)(u0)u(x) =
∫ 1

0
k(x, y)f2(y, u0(y))u(y)dy

(see [10]) where f2 denotes the partial derivative of f with respect to its second
variable, and in general

(DnN)(u0)(u1, u2, . . . , un)(x) =
∫ 1

0
k(x, y)f(2n)(y, u0(y))u1(y)u2(y) . . . un(y)dy,
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where f(2n) denotes the n−th partial derivative of f with respect to its second vari-
able.

Now using (8) and (12), we can evaluate, successively

u0 = v

u1 = A0

...

un = An−1.

We apply this to the Hammerstein integral equation (3) in two cases.

Case 1 : β ̸= 0

In this case our Hammerstein integral equation (3) modeling the chemical reaction,
contains all three positive parameters λ, µ, β.

We consider (3) as an equation in C[0, 1] with v ∈ C[0, 1] and N : C[0, 1] −→ C[0, 1]
defined by

v(x) = 0, x ∈ [0, 1]

and

Nu(x) = µ
∫ 1

0
k(x, y)(β − u(y)) expu(y)dy.

The Fréchet derivatives at u0 ∈ C[0, 1] are given by

(DnN)(u0)(u1, . . . , un)(x) = µ
∫ 1

0
k(x, y)(β − n− u0(y)) exp[u0(y)]u1(y) . . . un(y)dy.

Thus, from (8) and (12), we obtain

u0(x) = v(x) = 0

u1(x) = A0(x) = µβ
[
x− 1

λ
(eλ(x−1) − 1)

]

u2(x) = A1(x) = µ2β(β − 1)

[
eλ(x−1)[

x

λ
− 2

λ
− 3

λ2
] +

x2

2
+

2x

λ
+

(2 + e−λ)

λ2

]
.

Subsequent calculations to evaluate u3, u4, etc, to obtain numerical results in Sec-
tion 5 have been done using the Computer Algebra Package, Maple.

What we do not have is a proof of whether the resulting series converges to a so-
lution or not; but it seems that the convergence may depend on the parameters µ,
β and λ. Even the most recent work of Adomian [7] does not address the issue of
convergence. This clearly leaves scope for further work in this area.
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Case 2 : β = 0

With β = 0 the nonlinear term in (3) becomes

f(y, u) = −µu exp(u)

and thus N : C[0, 1] −→ C[0, 1] is defined by

(Nu)(x) = −
∫ 1

0
k(x, y)µu(x) exp(u(x))dy.

The Fréchet derivatives are given by the general formula

(DnN)(u0)(u1, . . . , un)(x) = −µ
∫ 1

0
k(x, y)(n+ u0(y)) exp[u0(y)]u1(y) . . . un(y)dy.

Following the procedure of Adomian’s method, we have

u0(x) = 0 ∀ x ∈ [0, 1]

u1(x) = A0(x) = 0 ∀ x ∈ [0, 1]

since u0(y) = 0 ∀ y ∈ [0, 1] .

Then, similarly,
u2(x) = A1(x) = 0 ∀ x ∈ [0, 1]

since u1(y) = 0 ∀ y ∈ [0, 1] .

It is clear that, in this case

un = An−1 = 0 ∈ C[0, 1] ∀ n

and Adomian’s method give the obvious trivial solution u = 0. The method has
worked, but does not produce any interesting results.

4 COMPARISON OF NUMERICAL RESULTS

To validate the application of Adomian’s method to the Hammerstein integral equa-
tion (3), we compare the solution developed in Section 3 with numerical results from
some classical techniques. The Contraction Mapping Principle used to prove the ex-
istence and uniqueness of the solution of the Hammerstein integral equation (3)
gives an iterative procedure that is known to converge to this solution. However,
the required integrations cannot be done analytically. Therefore, in applying the
Contraction Mapping Principle, the integrations are evaluated numerically using
the Trapezoidal rule.

For the following numerical results, the Computer Algebra Package, Maple is used.
We note that we truncate the numerical results after the sixth decimal point. We use
particular values of the parameters, λ = 10, β = 3, µ = 0.02 (for M = 2, µ = 0.02
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satisfies Theorem 1.1). For such values for the parameters, a unique solution in
B(2) ∈ C[0, 1] is guaranteed by the Contraction Mapping Principle. In evaluating
the solution by applying the Contraction Mapping Principle, we use the Trapezoidal
rule with a strip width h = 0.025.

For further comparison a shooting method has been applied to the original boundary
value problem (1)-(2). We use the boundary condition at zero and assume the value
of the solution at zero; then this initial value problem is solved using Maple and the
value of u′(1) is monitored. We seek the best initial value u(0) to get u′(1) = 0. We
find that u(0) = 0.0060483735 gives u′(1) = −0.88× 10−6 ≈ 0.

On the other hand, for Adomian’s method where the integration can be done ana-
lytically as above, there is a rapid convergence (the third and fourth iterations are
almost identical). The following table gives a comparison of the results from the
Contraction Mapping Principle, the shooting method and Adomian’s method.

x Contraction Principle Shooting method Adomian’s method
0 0.006079 0.006048 0.006048
0.2 0.018224 0.018192 0.018192
0.4 0.030456 0.030424 0.030424
0.6 0.042701 0.042669 0.042669
0.8 0.054401 0.054371 0.054371
1 0.061459 0.061458 0.061458

As shown in the table, Adomian’s method results agree with those of the shooting
method up to the sixth decimal place. The results from the Contraction Mapping
principle agree to at least three decimal place; but, these will involve errors due to
the numerical integrating procedure used.

5 CONCLUSION

Adomian’s method is relatively straightforward to apply at least with the assistance
of a powerful Computer Algebra Package and, in simple cases, produces a series that
can converge rapidly to known solution [7].

As shown in the previous section, for particular parameter values in our Hammer-
stein integral equation (3), Adomian’s method appears to show rapid convergence
to the unique solution obtained using the Contraction Mapping Principle. The
accuracy of Adomian’s method has been further confirmed by comparison with a
numerical solution of the original boundary value problem obtained using a shooting
method. This result confirms the view expressed by Some [5] who compared various
numerical methods for solving Hammerstein integral equations and concluded that
Adomian’s method was fast and efficient.
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However, we do not offer a proof of the convergence of Adomian’s method in this
application. Although a number of authors claim such results, no convincing proof
of the convergence of the method is known to us. Convergence must depend on the
nature of the nonlinearity. Clearly, one necessary condition is that the nonlinear
mapping is Fréchet differentiable, but there may be stricter requirements. It is es-
sential that such question be answered if Adomian’s method is to be regarded as a
robust algorithm for the numerical solution of nonlinear equations.
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