BION Oral

Novel Nanofibre Integrated SiN Scaffolds for Skeletal Implant Applications

Serdar Onat AKBULUT1, Betül ÖZBEK İPTEÇ2, Adrian BUTTERWORTH3, Hamed GHOORBANPOOR4, Gamze AVCİOĞLU5, Yasemin AKBAŞ1, Semih OKSUZ1, Leyla Didem KOZACI2, Gülşüm TOPATEŞ7, Fatma D. GÜZEL3, Damion CORRIGAN3, Hüseyin AVCI6

*Corresponding Author (havciesogu@gmail.com)

1Metallurgical and Materials Engineering Department, Ankara Yıldırım Beyazıt University, 06010, Ankara, Turkey
2Department of Medical Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, 06010, Ankara, Turkey
3Department of Biomedical Engineering, University of Strathclyde, United Kingdom
4Department of Polymer Science and Technology, Eskişehir Osmangazi University, Eskişehir, Turkey
5Department of Biomedical Engineering, Ankara Yıldırım Beyazıt University, 06010, Ankara, Turkey
6Metallurgical and Materials Engineering Department, Eskişehir Osmangazi University, Eskişehir, Turkey

Nowadays, increase in number of orthopedic surgery accelerates global interest in the world orthopedic industry. Apart from the increased number of the surgery, the rapid recovery becomes very important following the initial operations. One of the common problem for the patients is the biocompatibility between the implant and tissue [1-3]. In this study, we aimed to improve attachment of the implant to the tissue in addition to provide high biocompatibility. After preparing a scaffold by using SiN subsequently we have coated with fine gelatine nanofibers. SiN is one of the most commonly used bioactive ceramic class, and also its biocompatibility is good enough.

20 ppi porous and non-porous SiN by using replica method has been obtained as model implants in order to compare their biocompatibility. Afterwards, these scaffolds were subjected to coat with gelatine nanofibers by 10 wt.% polymer solutions using a traditional electrospinning set-up.

As indicated by the SEM images, porous and non-porous SiN ceramic surfaces were successfully coated with gelatine nanofibers. The average fiber diameter on porous structure was determined 234±36 and 229±52 nm after 5 and 1 min coating time, respectively. Moreover, the average fiber diameter on non-porous SiN implant during 25±5 sec was about 128±20 nm.

In conclusion, the both porous and non-porous SiN scaffold were successfully coated with fine gelatine nanofibers with having homogeneous distribution. Our study now is continuing to determine in vitro enhancement of cellular behaviours and responses to see effect of nanofibers coating for their future scientific and practical value. It is believed that this versatile and robust composite implant will increase the level of biocompatibility and shorten the healing period after it is placed in to the body.

References